Name \qquad Answer Key

Date \qquad
Honors Physics
Momentum WS \#3 Mrs. Nadworny

Bouncy (Elastic) Collisions

Directions: Read textbook pages 226-230. Solve the following problems using the GUESS method and proper significant figures. Be sure to show ALL work.

1. Cart A , of mass 1.2 kg , is at rest on a frictionless air track. It is struck by Cart B , of mass 2.7 kg , which is moving to the right at a velocity of $10.4 \mathrm{~m} / \mathrm{s}$. After the collision, Cart A is moving to the right at $4.9 \mathrm{~m} / \mathrm{s}$. Calculate the final velocity of Cart B.

Before
$\begin{array}{r} \mathrm{P}_{\text {before }}= \\ \mathrm{m}_{1} \mathrm{~V}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}= \\ (1.2 \mathrm{~kg})(0 \mathrm{~m} / \mathrm{s})+(2.7 \mathrm{~kg})(+10.4 \mathrm{~m} / \mathrm{s})= \\ 28.08 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}= \\ 8.2 \mathrm{~m} / \mathrm{s} \text { right }= \end{array}$

\quad After
Pafter $\quad m_{1} v_{1}+\mathrm{m}_{2} \mathrm{v}_{2}=$
$(1.2 \mathrm{~kg})(+4.9 \mathrm{~m} / \mathrm{s})+(2.7 \mathrm{~kg})\left(\mathrm{v}_{2}\right)=$
$5.88 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}+(2.7 \mathrm{~kg})\left(\mathrm{v}_{2}\right)$
v_{2}
2. A 2610 kg truck is traveling West at $23.8 \mathrm{~m} / \mathrm{s}$ when it collides with a 3660 kg truck traveling East at 15.4 m / s. After the collision, the 2610 kg truck is moving East at $3.91 \mathrm{~m} / \mathrm{s}$. Calculate the velocity of the 3660 kg truck.

Before	After
$\mathrm{P}_{\text {before }}=$	Pafter
($m_{1} v_{1}+m_{2} v_{2}=$	$m_{1} v_{1}+m_{2} v_{2}=$
$(2610 \mathrm{~kg})(-23.8 \mathrm{~m} / \mathrm{s})+(3660 \mathrm{~kg})(+15.4 \mathrm{~m} / \mathrm{s})=$	$(2610 \mathrm{~kg})(+3.91 \mathrm{~m} / \mathrm{s})+(3660 \mathrm{~kg})\left(\mathrm{v}_{2}\right)=$
$-5754 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}=$ $4.36 \mathrm{~m} / \mathrm{s}$ West $=$	$10205.1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}+(3660 \mathrm{~kg})\left(\mathrm{v}_{2}\right)$

3. A 0.158 kg apple is traveling with a momentum of $0.812 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ East. It collides with a 0.213 kg orange traveling at $7.65 \mathrm{~m} / \mathrm{s}$ West. After the collision the apple is traveling with a momentum of $1.43 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ West. Calculate the velocity of the orange after the collision.

$$
\begin{aligned}
\text { Before } & \\
P_{\text {before }} & = \\
p_{1}+\mathrm{m}_{2} \mathrm{~V}_{2} & = \\
(0.812 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s})+(0.213 \mathrm{~kg})(-7.65 \mathrm{~m} / \mathrm{s}) & = \\
-0.81745 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} & = \\
2.88 \mathrm{~m} / \mathrm{s} \text { East } & =
\end{aligned}
$$

Pafter
$\mathrm{p}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}=$
$(1.43 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s})+(0.213 \mathrm{~kg})\left(\mathrm{v}_{2}\right)=$
$-1.43 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}+(0.213 \mathrm{~kg})\left(\mathrm{v}_{2}\right)$
v_{2}

4. Bo Linball rolls a 6.3 kg bowling ball down the alley for the league championships. One pin is standing still, and Bo hits it head-on with a (forward) velocity of $9.2 \mathrm{~m} / \mathrm{s}$. The 3.1 kg pin acquires a forward velocity of $14.8 \mathrm{~m} / \mathrm{s}$. Calculate the new velocity of the bowling ball.

Before	After
$\begin{array}{r} \text { Pbefore }= \\ \mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}= \\ (6.3 \mathrm{~kg})(+9.2 \mathrm{~m} / \mathrm{s})+(3.1 \mathrm{~kg})(0 . \mathrm{m} / \mathrm{s})= \\ 57.96 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}= \\ 1.9 \mathrm{~m} / \mathrm{s} \text { forward }= \end{array}$	$\begin{aligned} & \text { Pafter } \\ & m_{1} v_{1}+m_{2} v_{2}= \\ & (6.3 \mathrm{~kg})\left(\mathrm{v}_{1}\right)+(3.1 \mathrm{~kg})(+14.8 \mathrm{~m} / \mathrm{s})= \\ & (6.3 \mathrm{~kg})\left(\mathrm{v}_{1}\right)+45.88 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \\ & v_{1} \end{aligned}$

Answers in size order: 1.9, 2.88, 4.36, 8.2

