Name \qquad Date \qquad
Honors Physics
Momentum WS \#3
Period \qquad Mrs. Nadworny

Bouncy (Elastic) Collisions

Directions: Read textbook pages 226-230. Solve the following problems using the GUESS method and proper significant figures. Be sure to show ALL work.

1. Cart A, of mass 1.2 kg , is at rest on a frictionless air track. It is struck by Cart B, of mass 2.7 kg , which is moving to the right at a velocity of $10.4 \mathrm{~m} / \mathrm{s}$. After the collision, Cart A is moving to the right at $4.9 \mathrm{~m} / \mathrm{s}$. Calculate the final velocity of Cart B.
2. A 2610 kg truck is traveling West at $23.8 \mathrm{~m} / \mathrm{s}$ when it collides with a 3660 kg truck traveling East at 15.4 m/s. After the collision, the 2610 kg truck is moving East at 3.91 m/s. Calculate the velocity of the 3660 kg truck.
3. A 0.158 kg apple is traveling with a momentum of $0.812 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ East. It collides with a 0.213 kg orange traveling at $7.65 \mathrm{~m} / \mathrm{s}$ West. After the collision the apple is traveling with a momentum of $1.43 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ West. Calculate the velocity of the orange after the collision.
4. Bo Linball rolls a 6.3 kg bowling ball down the alley for the league championships. One pin is standing still, and Bo hits it head-on with a (forward) velocity of $9.2 \mathrm{~m} / \mathrm{s}$. The 3.1 kg pin acquires a forward velocity of $14.8 \mathrm{~m} / \mathrm{s}$. Calculate the new velocity of the bowling ball.
