Name \qquad Date \qquad
Honors Physics
Thermodynamics WS \#5H
Period \qquad Mrs. Nadworny

Average Kinetic Energy

Directions: Read textbook pages 376-385. Solve the following problems using the GUESS method and proper significant figures. Be sure to show ALL work.

1. On the graph below, write the labels lower temperature and higher temperature to identify the curve that depicts the kinetic energy distribution of particles in a liquid at a lower temperature and at a higher temperature.

2. A 50 g container of nitrogen gas is at a temperature of 500 . K . What is the average kinetic energy of the molecules in the gas?

$$
\begin{aligned}
& \bar{K} \bar{E}=\frac{3}{2} k_{B} T=\frac{3}{2}\left(1.38 \times 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}}\right)(500 . K) \\
& \bar{K} \bar{E}=1.04 \times 10^{-20} \mathrm{~J}
\end{aligned}
$$

3. Calculate the kinetic energy of an individual gas molecule of mass $3.5 \times 10^{-26} \mathrm{~kg}$ moving at a speed of 600. m/s.

$$
\begin{aligned}
& K E=\frac{1}{2} m v^{2} \\
& K E=\frac{1}{2}\left(3.5 \times 10^{-26} \mathrm{~kg}\right)\left(600 \cdot \frac{m}{s}\right)^{2} \\
& K E=6.3 \times 10^{-21} \mathrm{~J}
\end{aligned}
$$

4. A sample of gas has an average kinetic energy of 4.71×10^{-22} joules. Calculate the average temperature of the sample.

$$
T=\frac{2}{3} \frac{K E}{k_{b}}=\frac{2}{3} \frac{\left(4.71 \times 10^{-22} \mathrm{~J}\right)}{\left(1.38 \times 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}}\right)}=22.8 \mathrm{~K}
$$

