Name \qquad
Honors Physics
Period \qquad

Date \qquad
Thermodynamics WS \#4H
Mrs. Nadworny

Gas Laws

Directions: Read textbook pages 376-385. Solve the following problems using the GUESS method and proper significant figures. Be sure to show ALL work.

1. Which graph represents the relationship between pressure and volume for a sample of an ideal gas at constant temperature?
(A)

(B)

(C)

(D)

2. Which statement describes the particles of an ideal gas?
(A) The particles move in a well-defined, circular paths.
(B) When particles collide, energy is lost.
(C) There are forces of attraction between the particles.
(D) The volume of the particles is negligible.
3. An ideal gas is enclosed in a sealed container. Upon, heating, which property of the gas does not change?
(A) Pressure
(B) Volume
(C) Average Speed
(D) Kinetic Energy
4. A box contains two compartments of equal volume separated by a divider. The two compartments each contain a random sample of n moles of a certain gas, but the pressure in compartment A is twice the pressure in compartment B. Which of the following statements is true?
(A) The temperature in A is twice the temperature in B
(B) The temperature in B is twice the temperature in A
(C) The value of the ideal gas constant, R, in A is twice the value of R in B
(D) The temperature in A is four times as great as the temperature in B
(E) The gas in A is a heavier isotope than the gas in B
5. There are four moles of a gas at $5.6 \times 10^{5} \mathrm{~Pa}$ and a volume of $0.012 \mathrm{~m}^{3}$. Calculate the temperature of the gas.

$$
\begin{aligned}
& P V=n R T \\
& T=\frac{P V}{n R}=\frac{\left(5.6 \times 10^{5} \mathrm{~Pa}\right)\left(0.012 \mathrm{~m}^{3}\right)}{(4 \mathrm{~mol})\left(8.31 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)}=2.0 \times 10^{2} \mathrm{~K}
\end{aligned}
$$

6. There is an unknown quantity of gas at $1.2 \times 10^{5} \mathrm{~Pa}$ and a volume of $0.031 \mathrm{~m}^{3}$ and a temperature of $87^{\circ} \mathrm{C}$. How many moles of gas is there?

$$
\begin{aligned}
& P V=n R T \\
& n=\frac{P V}{R T}=\frac{\left(1.2 \times 10^{5} \mathrm{~Pa}\right)\left(0.031 \mathrm{~m}^{3}\right)}{\left(8.31 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(360 \mathrm{~K})}=1.2 \mathrm{~mol}
\end{aligned}
$$

7. A gas in a closed container is under a pressure of 1 Pa and a temperature of $-173^{\circ} \mathrm{C}$. The gas is then heated to $27^{\circ} \mathrm{C}$. What is the new pressure of the gas?

300 K

$$
\begin{aligned}
& \frac{P_{1} \not Y_{1}}{T_{1}}=\frac{P_{2} \not Y_{2}}{T_{2}} \\
& P_{2}=\frac{P_{1} T_{2}}{T_{1}}=\frac{(1 \mathrm{~Pa})(300 \mathrm{~K})}{100 \mathrm{~K}}=3 \mathrm{~Pa}
\end{aligned}
$$

8. A gas has a volume of $3.0 \times 10^{-4} \mathrm{~m}^{3}$ at $4.0 \times 10^{4} \mathrm{~Pa}$. Calculate the new volume if the pressure is changed to $8.0 \times 10^{4} \mathrm{~Pa}$ while temperature remains constant.

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{X_{1}}=\frac{P_{2} V_{2}}{X_{2}} \\
& V_{2}=\frac{P_{1} V_{2}}{P_{2}}=\frac{\left(4.0 \times 10^{4} \mathrm{~Pa}\right)\left(3.0 \times 10^{-4} \mathrm{~m}^{3}\right)}{8.0 \times 10^{4} \mathrm{~Pa}}=1.5 \times 10^{-4} \mathrm{~m}^{3}
\end{aligned}
$$

9. A sample of gas has 3.95×10^{36} particles in it. Calculate the number of moles contained in the sample.

$$
n=\frac{N}{N_{A}}=\frac{3.95 \times 10^{36}}{6.02 \times 10^{23} \mathrm{~mol}^{-1}}=6.56 \times 10^{12} \mathrm{~mol}
$$

