
Name	Date
Honors Physics	Thermodynamics WS #4H
Period	Mrs. Nadworny

Gas Laws

Directions: Read textbook pages 376 - 385. Solve the following problems using the GUESS method and proper significant figures. Be sure to show ALL work.

1. Which graph represents the relationship between pressure and volume for a sample of an ideal gas at constant temperature?

- 2. Which statement describes the particles of an ideal gas?
 - (A) The particles move in a well-defined, circular paths.
 - (B) When particles collide, energy is lost.
 - (C) There are forces of attraction between the particles.
 - (D) The volume of the particles is negligible.
- 3. An ideal gas is enclosed in a sealed container. Upon, heating, which property of the gas does not change?
 - (A) Pressure
- (B) Volume
- (C) Average Speed
- (D) Kinetic Energy
- 4. A box contains two compartments of equal volume separated by a divider. The two compartments each contain a random sample of *n* moles of a certain gas, but the pressure in compartment *A* is twice the pressure in compartment *B*. Which of the following statements is true?
 - (A) The temperature in A is twice the temperature in B
 - (B) The temperature in B is twice the temperature in A
 - (C) The value of the ideal gas constant, R, in A is twice the value of R in B
 - (D) The temperature in A is four times as great as the temperature in B
 - (E) The gas in A is a heavier isotope than the gas in B
- 5. There are four moles of a gas at 5.6×10^5 Pa and a volume of 0.012 m^3 . Calculate the temperature of the gas.

6.	There is an unknown quantity of gas at 1.2×10^5 Pa and a volume of 0.031 m^3 and a temperature of $87 ^{\circ}\text{C}$. How many moles of gas is there?
7.	A gas in a closed container is under a pressure of 1 Pa and a temperature of $$ -173 $$ °C. The gas is then heated to 27 $$ °C. What is the new pressure of the gas?
8.	A gas has a volume of 3.0 x 10^{-4} m ³ at 4.0 x 10^4 Pa. Calculate the new volume if the pressure is changed to 8.0 x 10^4 Pa while temperature remains constant.
9.	A sample of gas has 3.95 x 10^{36} particles in it. Calculate the number of moles contained in the sample.
	Answers in size order: 1.5 x 10 ⁻⁴ , 1.2, 3, 2.0 x 10 ² , 6.56 x 10 ¹²