Date

Name	
Honors Physics	
Period	

Electrostatics WS #6H Mrs. Nadworny

Coulomb's Law

Directions: Solve the following problems using the GUESS method and proper significant figures. Be sure to show ALL work.

- An electrostatic force exists between two +3.20 × 10⁻¹⁹ coulomb point charges separated by a distance of 0.030 meter. As the distance between the two point charges is decreased, the electrostatic force of
 - (A) attraction between the two charges decreases
 - (B) attraction between the two charges increases
 - (C) repulsion between the two charges decreases
 - (D) repulsion between the two charges increases
- 2. What is the magnitude of the electrostatic force exerted on an electron by another electron when they are 0.10 meter apart?

(A) 2.6×10^{-36} N (B) 2.3×10^{-26} N (C) 2.3×10^{-27} N (D) 1.4×10^{-8} N

3. When two point charges of magnitude q_1 and q_2 are separated by a distance, r, the magnitude of the electrostatic force between them is F. What would be the magnitude of the electrostatic force between point charges $2q_1$ and $4q_2$ when separated by a distance of 2r?

(A) F (B) 2F (C) 4F (D) 16F

4. An electrical force of 8.0×10^{-5} newton exists between two point charges, q_1 and q_2 . If the distance between the charges is doubled, the new electrical force between the charges will be

(A) 1.6×10^{-4} N (B) 3.2×10^{-4} N (C) 2.0×10^{-5} N (D) 4.0×10^{-5} N

5. The diagram represents two charges, q_1 and q_2 , separated by distance d. Which change would produce the greatest increase in the electric force between the two charges?

$$\begin{array}{c} | \longleftarrow d \longrightarrow | \\ \hline \begin{array}{c} @ \\ \end{array} \end{array}$$

(A) doubling d and charge q_1 , only

(B) doubling d and charges q_1 and q_2

 $\begin{array}{l} (C) \ doubling \ d, \ only \\ (D) \ doubling \ q_1, \ only \end{array}$

Continued on the next page

- 6. An electron and a proton are 0.89 meter apart. They are in deep space away from all other gravitational influences.
 - a. Calculate the electrostatic force between them.

b. Calculate the gravitational force between them.

- 7. Two positive point charges, q_1 and q_2 , are a certain distance, d, apart. What happens to the magnitude of the electrostatic force between them if:
 - a. The charge on q_1 is doubled?
 - b. The charge on q_1 is doubled and the charge on q_2 is tripled?
 - c. The distance between q_1 and q_2 is cut in half?

Answers in size order: 1.3×10^{-67} , 2.9×10^{-28} , 2, 4, 6