Name \qquad Answer Key

Date \qquad
Honors Physics
Electrostatics WS \#5H
Period \qquad Mrs. Nadworny

Coulomb's Law

Directions: Solve the following problems using the GUESS method and proper significant figures. Be sure to show ALL work.

1. An electrostatic force exists between two $+3.20 \times 10^{-19}$ coulomb point charges separated by a distance of 0.030 meter. As the distance between the two point charges is decreased, the electrostatic force of
(A) attraction between the two charges decreases
(B) attraction between the two charges increases
(C) repulsion between the two charges decreases
(D) repulsion between the two charges increases
2. What is the magnitude of the electrostatic force exerted on an electron by another electron when they are 0.10 meter apart?
(A) $2.6 \times 10^{-36} \mathrm{~N}$
(B) $2.3 \times 10^{-26} \mathrm{~N}$
(C) $2.3 \times 10^{-27} \mathrm{~N}$
(D) $1.4 \times 10^{-8} \mathrm{~N}$
3. When two point charges of magnitude q_{1} and q_{2} are separated by a distance, r, the magnitude of the electrostatic force between them is F. What would be the magnitude of the electrostatic force between point charges $2 q_{1}$ and $4 q_{2}$ when separated by a distance of $2 r$?
(A) F
(B) 2 F
(C) 4 F
(D) 16 F
4. An electrical force of 8.0×10^{-5} newton exists between two point charges, q_{1} and q_{2}. If the distance between the charges is doubled, the new electrical force between the charges will be
(A) $1.6 \times 10^{-4} \mathrm{~N}$
(B) $3.2 \times 10^{-4} \mathrm{~N}$
(C) $2.0 \times 10^{-5} \mathrm{~N}$
(D) $4.0 \times 10^{-5} \mathrm{~N}$
5. The diagram represents two charges, q_{1} and q_{2}, separated by distance d. Which change would produce the greatest increase in the electric force between the two charges?

(A) doubling d and charge q_{1}, only
(C) doubling d, only
(B) doubling d and charges q_{1} and q_{2}
(D) doubling q_{1}, only
6. An electron of mass m_{e} orbits an alpha particle of mass m_{α} in a circular orbit of radius r. Which expression gives the speed of the electron?
(A) $\sqrt{\frac{2 k e^{2}}{m_{e} r}}$
(B) $\sqrt{\frac{2 k e^{2}}{m_{a} r}}$
(C) $\sqrt{\frac{4 k e^{2}}{m_{e} r}}$
(D) $\sqrt{\frac{4 k e^{2}}{m_{a} r}}$
7. An electron and a proton are 0.89 meter apart. They are in deep space away from all other gravitational influences.
a. Calculate the electrostatic force between them.

$$
F_{e}=\frac{k q_{1} q_{2}}{r^{2}}=\frac{8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\left(1.6 \times 10^{-19} \mathrm{C}\right)\left(1.6 \times 10^{-19} \mathrm{C}\right)}{(0.89 \mathrm{~m})^{2}}=2.9 \times 10^{-28} \mathrm{~N} \text { attractive }
$$

b. Calculate the gravitational force between them.

$$
\mathrm{F}_{\mathrm{G}}=\frac{G m_{1} m_{2}}{r^{2}}=\frac{6.67 \times 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}^{2}}\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(1.67 \times 10^{-27} \mathrm{~kg}\right)}{(0.89 \mathrm{~m})^{2}}=1.3 \times 10^{-67} \mathrm{~N} \text { attractive }
$$

8. Two positive point charges, q_{1} and q_{2}, are a certain distance, d, apart. What happens to the magnitude of the electrostatic force between them if:
a. The charge on q_{1} is doubled?

$$
F_{e}=\frac{k q_{1} q_{2}}{r^{2}}=\frac{k\left(2 q_{1}\right) q_{2}}{r^{2}} \times 2 \quad F_{e}=\frac{k q_{1} q_{2}}{r^{2}}=\frac{(1)(2)(1)}{(1)^{2}}=2 \text { double }
$$

b. The charge on q_{1} is doubled and the charge on q_{2} is tripled?

$$
F_{e}=\frac{k q_{1} q_{2}}{r^{2}}=\frac{k\left(2 q_{1}\right)\left(3 q_{2}\right)}{r^{2}} \times 6 \quad F_{e}=\frac{k q_{1} q_{2}}{r^{2}}=\frac{(1)(2)(3)}{(1)^{2}}=6
$$

c. The distance between q_{1} and q_{2} is cut in half?

$$
F_{e}=\frac{k q_{1} q_{2}}{r^{2}}=\frac{k q_{1} q_{2}}{\left(\frac{r}{2}\right)^{2}}=\frac{k q_{1} q_{2}}{\frac{r^{2}}{4}} \times 4 \quad F_{e}=\frac{k q_{1} q_{2}}{r^{2}}=\frac{(1)(1)(1)}{\left(\frac{1}{2}\right)^{2}}=4 \text { quadruple }
$$

Answers in size order: $1.3 \times 10^{-67}, 2.9 \times 10^{-28}, 2,4,6$

