Date ___

Name <u>Answer Key</u> Honors Physics Period _____

Electrostatics WS #5H Mrs. Nadworny

Coulomb's Law

Directions: Solve the following problems using the GUESS method and proper significant figures. Be sure to show ALL work.

- An electrostatic force exists between two +3.20 × 10⁻¹⁹ coulomb point charges separated by a distance of 0.030 meter. As the distance between the two point charges is decreased, the electrostatic force of
 - (A) attraction between the two charges decreases
 - (B) attraction between the two charges increases
 - (C) repulsion between the two charges decreases
 - (D) repulsion between the two charges increases
- 2. What is the magnitude of the electrostatic force exerted on an electron by another electron when they are 0.10 meter apart?

(A) 2.6×10^{-36} N (B) 2.3×10^{-26} N (C) 2.3×10^{-27} N (D) 1.4×10^{-8} N

- 3. When two point charges of magnitude q_1 and q_2 are separated by a distance, r, the magnitude of the electrostatic force between them is F. What would be the magnitude of the electrostatic force between point charges $2q_1$ and $4q_2$ when separated by a distance of 2r?
 - (A) F (B) 2F (C) 4F (D) 16F
- 4. An electrical force of 8.0×10^{-5} newton exists between two point charges, q_1 and q_2 . If the distance between the charges is doubled, the new electrical force between the charges will be

(A) 1.6×10^{-4} N (B) 3.2×10^{-4} N (C) 2.0×10^{-5} N (D) 4.0×10^{-5} N

5. The diagram represents two charges, q₁ and q₂, separated by distance d. Which change would produce the greatest increase in the electric force between the two charges?

(A) doubling d and charge q_1 , only

(B) doubling d and charges q_1 and q_2

(C) doubling d, only(D) doubling q₁, only

6. An electron of mass m_e orbits an alpha particle of mass m_α in a circular orbit of radius r. Which expression gives the speed of the electron?

- 7. An electron and a proton are 0.89 meter apart. They are in deep space away from all other gravitational influences.
 - a. Calculate the electrostatic force between them.

$$F_{e} = \frac{kq_{1}q_{2}}{r^{2}} = \frac{8.99 \times 10^{9} \frac{N \cdot m^{2}}{C^{2}} (1.6 \times 10^{-19} \text{ C}) (1.6 \times 10^{-19} \text{ C})}{(0.89m)^{2}} = 2.9 \times 10^{-28} \text{ N attractive}$$

b. Calculate the gravitational force between them.

$$F_{\rm G} = \frac{Gm_1m_2}{r^2} = \frac{6.67 \times 10^{-11} \frac{N \cdot m^2}{kg^2} (9.11 \times 10^{-31} kg) (1.67 \times 10^{-27} kg)}{(0.89m)^2} = 1.3 \times 10^{-67} N \text{ attractive}$$

- 8. Two positive point charges, q_1 and q_2 , are a certain distance, d, apart. What happens to the magnitude of the electrostatic force between them if:
 - a. The charge on q_1 is doubled?

$$F_{\rm e} = \frac{kq_1q_2}{r^2} = \frac{k(2q_1)q_2}{r^2} \quad \text{x2} \qquad \qquad F_{\rm e} = \frac{kq_1q_2}{r^2} = \frac{(1)(2)(1)}{(1)^2} = 2 \text{ double}$$

b. The charge on q_1 is doubled and the charge on q_2 is tripled?

$$F_{\rm e} = \frac{kq_1q_2}{r^2} = \frac{k(2q_1)(3q_2)}{r^2} \quad \text{x6} \qquad \qquad F_{\rm e} = \frac{kq_1q_2}{r^2} = \frac{(1)(2)(3)}{(1)^2} = 6$$

c. The distance between q_1 and q_2 is cut in half?

$$F_{e} = \frac{kq_{1}q_{2}}{r^{2}} = \frac{kq_{1}q_{2}}{\left(\frac{r}{2}\right)^{2}} = \frac{kq_{1}q_{2}}{\frac{r^{2}}{4}} \quad X4 \qquad F_{e} = \frac{kq_{1}q_{2}}{r^{2}} = \frac{(1)(1)(1)}{\left(\frac{1}{2}\right)^{2}} = 4 \text{ quadruple}$$

Answers in size order: 1.3×10^{-67} , 2.9×10^{-28} , 2, 4, 6