Name \qquad Answer Key

Date \qquad
Honors Physics
Period \qquad
Energy WS \#9H Mrs. Nadworny

Springs

Directions: Read online textbook pages 437-442. Solve the following problems using the GUESS method and proper significant figures. Be sure to show ALL work.

1. The graph below represents the relationship between the force applied to a spring and spring elongation for four different springs. Which spring has the greatest spring constant?

2. A spring has an unstretched length of 0.40 meter. The spring is stretched to a length of 0.60 meter when a 10.-newton weight is hung motionless from one end. The spring constant of this spring is
(A) $10 . \mathrm{N} / \mathrm{m}$
(B) $17 \mathrm{~N} / \mathrm{m}$
(C) $25 \mathrm{~N} / \mathrm{m}$
(D) $50 . \mathrm{N} / \mathrm{m}$
3. A vertical spring has a spring constant of 100. newtons per meter. When an object is attached to the bottom of the spring, the spring changes from its unstretched length of 0.50 meter to a length of 0.65 meter. The magnitude of the weight of the attached object is
(A) 1.1 N
(B) 15 N
(C) $50 . \mathrm{N}$
(D) 65 N
4. The diagram below represents a 35-newton block hanging from a vertical spring, causing the spring to elongate from its original length.

Unstretched spring Stretched spring

Determine the spring constant of the spring.

$$
F=k x \quad k=\frac{F}{x}=\frac{(35 \mathrm{~N})}{0.10 \mathrm{~m}}=350 \mathrm{~N} / \mathrm{m}
$$

5. Cy Dwoks applies 317 N of force to a spring with a spring constant of $104 \mathrm{~N} / \mathrm{m}$. How far does he get it to stretch?

$$
x=\frac{F}{k}=\frac{317 \mathrm{~N}}{104 \frac{N}{m}}=3.05 \mathrm{~m}
$$

6. It takes a force of 24.7 N to hold a spring stretch a distance of 41.9 cm . What is the elastic potential energy of the spring in this position? [Hint: Watch your units!]

$$
\begin{aligned}
& k=\frac{F}{x}=\frac{24.7 \mathrm{~N}}{0.419 \mathrm{~m}}=58.9 \mathrm{~N} / \mathrm{m} \\
& P E_{\text {elastic }}=\frac{1}{2} k x^{2}=\frac{1}{2}(58.9 \mathrm{~N} / \mathrm{m})(0.419 \mathrm{~m})^{2}=5.17 \mathrm{~J}
\end{aligned}
$$

7. The largest meteorite of lunar origin reportedly has a mass of 19.0 grams. If the meteorite produces a compression of 2.24 mm when placed on a spring scale, what is the spring constant of the spring? [Hint: Watch your units!]

$$
F=k x \rightarrow k=\frac{F}{x}=\frac{m g}{x}=\frac{(.0190 \mathrm{~kg})\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)}{.00224 \mathrm{~m}}=83.2 \frac{\mathrm{~N}}{\mathrm{~m}}
$$

8. A 0.250 kg mass is attached to a spring which has a spring constant of $35 \mathrm{~N} / \mathrm{m}$, as shown. It is pulled down and released so that it bobs up and down. Position A is the mass' highest point. Position C is the mass' lowest point. Position B is the mass' equilibrium position.

a. Where does the mass have the most gravitational potential energy? A
b. Where does the spring have the most elastic potential energy? C
c. Where is the mass traveling the fastest? B
d. Where does the mass have the most kinetic energy? B
e. Calculate the period of the spring.

$$
T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{0.250 \mathrm{~kg}}{35}}=0.53 \mathrm{~s}
$$

