Name	Answer key
Physics	
Period	

Energy WS #7 Mrs. Nadworny

Date ____

Devious Physics Student

Directions: Solve the following problems using the GUESS method and proper significant figures. Be sure to show ALL work.

Two devious physics students are going to roll a 150.0 kg boulder down the (frictionless) hill as shown below. Determine the potential energy, kinetic energy and the speed of the boulder at each point. Show all work using the GUESS method in the spaces provided in the table.

Location	Total Energy	Potential Energy	Kinetic Energy	Speed
Тор	294,000 J	PE = mgh = (150.0 kg)(9.81 m/s ²)(200. m) = 294,000 J	KE = E _T - PE = 294,000 J - 294,000 J = 0 J	$v = \sqrt{\frac{2KE}{m}}$ $= \sqrt{\frac{2(0 \text{ J})}{150. \text{ kg}}}$ $= 0 \text{ m/s}$

Continued on next page

A	294,000 J	PE = mgh = (150.0 kg)(9.81 m/s ²)(50.0 m) = 73,600 J	KE = E _τ - PE = 294,000 J - 73,600 J = 220,000 J = 2.20×10 ⁵ J	$v = \sqrt{\frac{2KE}{m}}$ = $\sqrt{\frac{2(220,000 \text{ J})}{150. \text{ kg}}}$ = 54.2 m/s
B	294,000 J	PE = mgh = (150.0 kg)(9.81 m/s ²)(0 m) = 0 J	KE = E _T - PE = 294,000 J - 0 J = 294,000 J	$v = \sqrt{\frac{2KE}{m}}$ = $\sqrt{\frac{2(294,000 \text{ J})}{150. \text{ kg}}}$ = 62.6 m/s
C	294,000 J	PE = mgh = (150.0 kg)(9.81 m/s ²)(100. m) = 147,000 J	KE = E _T - PE = 294,000 J - 147,000 J = 147,000 J	$v = \sqrt{\frac{2KE}{m}}$ = $\sqrt{\frac{2(147,000 \text{ J})}{150. \text{ kg}}}$ = 44.3 m/s
D	294,000 J	PE = mgh = (150.0 kg)(9.81 m/s ²)(150. m) = 221,000 J	KE = E _T - PE = 294,000 J - 221,000 J = 73,000 J	$v = \sqrt{\frac{2KE}{m}} = \sqrt{\frac{2(73,000 \text{ J})}{150. \text{ kg}}} = 31 \text{ m/s}$