Name \qquad Answer Key
Honors Physics
Period \qquad
Date \qquad
Energy WS \#4H Mrs. Nadworny

Energy

Directions: Read online textbook pages 172-179. Solve the following problems using the GUESS method and proper significant figures. Be sure to show ALL work.

1. As the speed of a bicycle moving along a level horizontal surface changes from 2 meters per second to 4 meters per second, the magnitude of the bicycle's gravitational potential energy
(A) decreases
(B) increases
(C) remains the same
2. If the speed of a car is doubled, the kinetic energy of the car is
(A) quartered
(B) quadrupled
(C) doubled
(D) halved
3. The diagram below shows block A, having mass $2 m$ and speed v, and block B, having mass m and speed 2 v .

Compared to the kinetic energy of block A, the kinetic energy of block B is
(A) four times as great
(B) the same
(C) one-half as great
(D) twice as great
4. Which graph best represents the kinetic energy of an object as a function of its speed?
(A)

(C)

(B)

(D)

5. Which graph best represents the gravitational potential energy of an object as a function of its height?
(A)

(C)

(B)
(D)

Continued on next page
6. A 60.0 kilogram runner has 2170 joules of kinetic energy. Calculate the speed of the runner.

$$
v=\sqrt{\frac{2 K E}{m}}=\sqrt{\frac{2(2170 \mathrm{~J})}{60.0 \mathrm{~kg}}}=8.50 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

7. Carole Singers, whose mass is 74.1 kg , is standing on a hill at a point that is 2.50 meters from level ground. If she walks to a point that is 13.6 meters above level ground, what is her change in potential energy?

$$
\Delta P E=m g \Delta h=(74.1 \mathrm{~kg})\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(11.1 \mathrm{~m})=8070 \mathrm{~J}
$$

8. A 2900 kg car is driving at $20.8 \mathrm{~m} / \mathrm{s}$.
a. What is its kinetic energy?

$$
K E=\frac{1}{2} m v^{2}=\frac{1}{2}(2900 \mathrm{~kg})\left(20.8 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}=6.3 \times 10^{5} \mathrm{~J}
$$

b. If the car speeds up to $29.2 \mathrm{~m} / \mathrm{s}$, what is its CHANGE in kinetic energy?

$$
\begin{aligned}
& K E_{\text {new }}=\frac{1}{2} m v^{2}=\frac{1}{2}(2900 \mathrm{~kg})\left(29.2 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}=1.2 \times 10^{6} \mathrm{~J} \\
& \Delta K E=K E_{\text {new }}-K E_{\text {old }}=1.2 \times 10^{6} \mathrm{~J}-6.3 \times 10^{5} \mathrm{~J}=6 \times 10^{5} \mathrm{~J}
\end{aligned}
$$

9. A person who weighs 645 newtons rides an elevator upward at a constant speed of 3.0 meters per second for 5.0 second. Calculate the change in the person's gravitational potential energy.

$$
\begin{gathered}
h=v t=\left(3.0 \frac{m}{s}\right)(5.0 s)=15 m \\
P E=m g h=(645 N)(15 m)=9700 J
\end{gathered}
$$

