Name $\qquad$
Answer Key
Date $\qquad$
Honors Physics
Electric Circuits WS \#9H
Period $\qquad$ Mrs. Nadworny

## Combined Circuits

Directions: Read online textbook pages 746-751. Solve the following problems using the GUESS method and proper significant figures. Be sure to show ALL work.

1. A capacitor is made of two charged parallel plates of area A that are separated by a distance d, and it has a capacitance of $C$.
a. What happens to the capacitance when the area of the plates is tripled?

$$
C \propto \frac{A}{d}=\frac{3}{1}=3
$$

b. What happens to the capacitance when the distance is doubled?

$$
C \propto \frac{A}{d}=\frac{1}{2}=1 / 2
$$

2. A 12 V battery is connected in series to a 3 ohm resistor and an initially uncharged capacitor.
a. Determine the current in the circuit immediately after the battery is connected to the resistor and capacitor.

$$
\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{12 \mathrm{~V}}{3 \Omega}=4 \mathrm{~A}
$$

b. Determine the current in the circuit a long time later.

A long time later the capacitor is fully charged and acts like a broken wire current will not flow in a series circuit with a broken wire.
3. A circuit is set up so a 2 ohm and an 8 ohm resistor are in series with each other and in parallel with a capacitor and a 10 volt cell, as shown.

a. Determine the current in the 2 ohm resistor immediately after the battery is connected to the circuit.

An empty capacitor acts like a wire - in a parallel circuit it is a short circuit current will not flow through the other segment - so there is no current through the 2 ohm resistor.
b. Determine the current in the 2 ohm resistor a long time later.

$$
\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{2}=2 \Omega+8 \Omega=10 \Omega
$$

$$
\mathrm{I}_{\mathrm{T}}=\frac{\mathrm{V}_{T}}{\mathrm{R}_{\mathrm{eq}}}=\frac{10 \mathrm{~V}}{10 \Omega}=1 \mathrm{~A}
$$

4. A circuit contains five resistors as shown. The total current flowing through the circuit is 3.71 A .

a. Calculate the equivalent resistance of the circuit.

- Step 1:

$$
\begin{aligned}
& \frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{1}{6.0 \Omega}+\frac{1}{6.0 \Omega}=\frac{2}{6.0} \\
& R_{e q}=6 / 2=3.0 \Omega
\end{aligned}
$$

- Step 2:

$$
R_{e q}=R_{1}+R_{2}=5.0 \Omega+3.0 \Omega=8.0 \Omega
$$

- Step 3:

$$
R_{e q}=R_{1}+R_{2}=2.0 \Omega+6.0 \Omega=8.0 \Omega
$$

- Step 4:

$$
\begin{aligned}
& \frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{1}{8.0 \Omega}+\frac{1}{8.0 \Omega}=\frac{2}{8.0} \\
& R_{e q}=8 / 2=4.0 \Omega
\end{aligned}
$$

b. Calculate the total voltage provided by the cell.

$$
V_{T}=I \cdot R=(3.71 \mathrm{~A})(4.0 \Omega)=15 \mathrm{~V}
$$

