Name \qquad Answer Key

Date \qquad
Honors Physics
Electric Circuits WS \#8H
Period \qquad Mrs. Nadworny

Parallel Circuits

Directions: Read online textbook pages 740-745. Solve the following problems using the GUESS method and proper significant figures. Be sure to show ALL work.

1. In the diagram below, lamps L_{1} and L_{2} are connected to a constant voltage power supply.

If lamp L_{1} burns out, the brightness of L_{2} will
(A) increase
(B) decrease
(C) remain the same
2. In which circuit would ammeter A show the greatest current?
(A)
(B)

(C)

3. A 20. ohm resistor, R_{1}, and a resistor of unknown resistance, R_{2}, are connected in parallel to a 30. volt source, as shown in the circuit diagram below. An ammeter in the circuit reads 2.0 amperes.

a. Calculate the equivalent resistance of the circuit.

$$
R_{e q}=\frac{V_{T}}{l_{T}}=\frac{30 . \mathrm{V}}{2.0 \mathrm{~A}}=15 \Omega
$$

b. Calculate the resistance of R_{2}.

$$
\begin{aligned}
& \frac{1}{R_{2}}=\frac{1}{R_{\mathrm{eq}}}-\frac{1}{R_{1}}=\frac{1}{15 \Omega}-\frac{1}{20 . \Omega} \\
& R_{2}=60 . \Omega
\end{aligned}
$$

4. A 9.0 volt battery is connected in parallel to a $10 . \Omega$ resistor, a 2.0Ω resistor and a 6.0Ω resistor. There is an ammeter to measure the total current flowing through the circuit and a voltmeter to measure the potential difference across the $10 . \Omega$ resistor.
a. Draw a circuit diagram using proper schematic symbols.

b. The current through each resistor

$$
\begin{aligned}
& I_{R 1}=\frac{V_{R 1}}{R_{1}}=\frac{9.0 \mathrm{~V}}{10 . \Omega}=0.90 \mathrm{~A} \\
& I_{R 2}=\frac{V_{R 2}}{R_{2}}=\frac{9.0 \mathrm{~V}}{2.0 \Omega} 4.5 \mathrm{~A} \\
& I_{R 3}=\frac{V_{R 3}}{R_{3}}=\frac{9.0 \mathrm{~V}}{6.0 \Omega}=1.5 \mathrm{~A}
\end{aligned}
$$

c. The total current in the circuit

$$
I_{\text {total }}=I_{R 1}+I_{R 2}+I_{R 3}=0.90 \mathrm{~A}+4.5 \mathrm{~A}+1.5 \mathrm{~A}=6.9 \mathrm{~A}
$$

d. The equivalent resistance of the circuit.

$$
R_{\text {total }}=\frac{V_{\text {total }}}{I_{\text {total }}}=\frac{9.0 \mathrm{~V}}{6.9 \mathrm{~A}}=1.3 \Omega \quad \begin{aligned}
& \frac{1}{R_{\text {eq }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}=\frac{1}{10 . \Omega}+\frac{1}{2.0 \Omega}+\frac{1}{6.0 \Omega} \\
& R_{\text {eq }}=1.3 \Omega
\end{aligned}
$$

5. A 15 ohm resistor, R_{1}, and a 30. ohm resistor, R_{2}, are to be connected in parallel between points A and B in a circuit containing a 90. volt battery. Complete the diagram below to show the two resistors connected in parallel between points A and B.

