Name \qquad Date \qquad
Honors Physics
Electric Circuits WS \#11H
Period \qquad Mrs. Nadworny

Circuits Review

Directions: Solve the following problems using the GUESS method and proper significant figures. Be sure to show ALL work.

1. A circuit contains three resistors (R_{1} is 4.5 ohms, R_{2} and R_{3} are unknown) in series with a 9.0 volt battery. A voltmeter attached to R_{1} reads 3.0 volts. A voltmeter attached to R_{2} reads 2.5 volts.
a. Draw a circuit schematic of the circuit detailed above. Remember to use proper schematic symbols and label it.
b. Calculate the potential drop across resistor R_{3}
c. Calculate the current that passes through R_{1}.
d. Determine the current that passes through R_{2} and R_{3}.
e. Calculate the resistances of R_{2} and R_{3}.
f. Calculate the equivalent resistance of the circuit.
2. How many charges flow through a circuit if a 24 A current is allowed to flow for 2.70 minutes?
3. When a 43Ω resistor is connected to a battery, the current in the circuit is 0.54 A . What is the voltage of the battery?
4. A circuit contains three resistors (R_{1} is 15 ohms, R_{2} is 25 ohms, and R_{3} is 35 ohms) in parallel with a 15.0 volt battery.
a. Draw a circuit schematic of the circuit detailed above. Remember to use proper schematic symbols and label it. Also include an ammeter capable of reading the total current in the circuit and a voltmeter capable of reading the potential difference across the 25 ohm resistor.
b. Determine the potential difference across each resistor.
c. Calculate the current flowing through each resistor.
d. Calculate the total current flowing through the circuit.
e. Calculate the equivalent resistance of the circuit.
5. A tungsten wire that is 4.0 meters long with a diameter of 2.6 mm at $20^{\circ} \mathrm{C}$. It is part of a circuit connected to a 7.5 volt battery.
a. Calculate the resistance of the wire.
b. Calculate the current in the wire.
c. Calculate the power used by the circuit.
d. Calculate the energy required to power the circuit if it runs for 4.5 minutes.
