Name \qquad Answer Key

Date \qquad
Honors Physics
Electric Circuits WS \#10H
Period \qquad Mrs. Nadworny

Circuits Review

Directions: Solve the following problems using the GUESS method and proper significant figures. Be sure to show ALL work.

1. A circuit contains three resistors (R_{1} is 4.5 ohms, R_{2} and R_{3} are unknown) in series with a 9.0 volt battery. A voltmeter attached to R_{1} reads 3.0 volts. A voltmeter attached to R_{2} reads 2.5 volts.
a. Draw a circuit schematic of the circuit detailed above. Remember to use proper schematic symbols and label it.

b. Calculate the potential drop across resistor R3.

$$
\begin{aligned}
\mathrm{V} & =\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3} \\
\mathrm{~V}_{3} & =\mathrm{V}-\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right) \\
& =9.0 \mathrm{~V}-(3.0 \mathrm{~V}+2.5 \mathrm{~V}) \\
& =3.5 \mathrm{~V}
\end{aligned}
$$

c. Calculate the current that passes through R_{1}.

$$
I=\frac{V_{1}}{R_{1}}=\frac{3.0 \mathrm{~V}}{4.5 \Omega}=0.67 \mathrm{~A}
$$

d. Determine the current that passes through R_{2} and R_{3}.

$$
I_{T}=I_{1}=I_{2}=I_{3}=0.67 \mathrm{~A}
$$

e. Calculate the resistances of R_{2} and R_{3}.

$$
R_{2}=\frac{V_{2}}{I_{2}}=\frac{2.5 \mathrm{~V}}{0.67 \mathrm{~A}}=3.7 \Omega \quad R_{3}=\frac{V_{3}}{I_{3}}=\frac{3.5 \mathrm{~V}}{0.67 \mathrm{~A}}=5.2 \Omega
$$

f. Calculate the equivalent resistance of the circuit.

$$
R_{e q}=R_{1}+R_{2}+R_{3}=4.5 \Omega+3.7 \Omega+5.2 \Omega=13.4 \Omega
$$

2. How many charges flow through a circuit if a 24 A current is allowed to flow for 2.7 minutes?

$$
q=I t=24 \mathrm{~A}(162 \mathrm{~s})=3900 \mathrm{C}\left(\frac{1 \mathrm{e}}{1.60 \times 10^{-19} \mathrm{C}}\right)=2.4 \times 10^{22} \mathrm{e}
$$

3. When a 43Ω resistor is connected to a battery, the current in the circuit is 0.54 A . What is the voltage of the battery?

$$
V=I R=0.54 A(43 \Omega)=23 V
$$

4. A circuit contains three resistors (R_{1} is 15 ohms, R_{2} is 25 ohms, and R_{3} is 35 ohms) in parallel with a 15.0 volt battery.
a. Draw a circuit schematic of the circuit detailed above. Remember to use proper schematic symbols and label it. Also include an ammeter capable of reading the total current in the circuit and a voltmeter capable of reading the potential difference across the 25 ohm resistor.

b. Determine the potential difference across each resistor.

$$
V=V_{1}=V_{2}=V_{3}=15.0 \mathrm{~V}
$$

c. Calculate the current flowing through each resistor.

$$
\begin{aligned}
& I_{1}=\frac{V_{1}}{R_{1}}=\frac{15.0 \mathrm{~V}}{15 \Omega}=1.0 \mathrm{~A} \\
& \mathrm{I}_{2}=\frac{\mathrm{V}_{2}}{\mathrm{R}_{2}}=\frac{15.0 \mathrm{~V}}{25 \Omega}=0.60 \mathrm{~A} \\
& \mathrm{I}_{3}=\frac{\mathrm{V}_{3}}{\mathrm{R}_{3}}=\frac{15.0 \mathrm{~V}}{35 \Omega}=0.43 \mathrm{~A}
\end{aligned}
$$

d. Calculate the total current flowing through the circuit.

$$
\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}=1.0 \mathrm{~A}+0.60 \mathrm{~A}+0.43 \mathrm{~A}=2.0 \mathrm{~A}
$$

e. Calculate the equivalent resistance of the circuit.

$$
\mathrm{R}_{\mathrm{T}}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{T}}}=\frac{15.0 \mathrm{~V}}{2.0 \mathrm{~A}}=7.5 \Omega \quad \text { or } \quad \begin{aligned}
& \frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}=\frac{1}{15 \Omega}+\frac{1}{25 \Omega}+\frac{1}{35 \Omega}=\frac{35}{525 \Omega}+\frac{21}{525 \Omega}+\frac{15}{525 \Omega}+ \\
& \frac{1}{R}=\frac{71}{525 \Omega} \\
& R=7.4 \Omega
\end{aligned}
$$

5. A tungsten wire that is 4.0 meters long with a diameter of 2.6 mm at $20^{\circ} \mathrm{C}$. It is part of a circuit connected to a 7.5 volt battery.
a. Calculate the resistance of the wire.

$$
R=\frac{\rho L}{A}=\frac{\rho L}{\pi r^{2}}=\frac{\left(5.60 \times 10^{-8} \Omega \cdot m\right)(4.0 m)}{\pi(.0013 m)^{2}}=.042 \Omega
$$

b. Calculate the current in the wire.

$$
\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{7.5 \mathrm{~V}}{.042 \Omega}=180 \mathrm{~A}
$$

Any of the three will work!
c. Calculate the power used by the circuit.

$$
P=I V=(180 A)(7.5 \mathrm{~V})=1400 \mathrm{~W} \quad P=I^{2} R=(180 A)^{2}(0.042 \Omega)=1400 \mathrm{~W} \quad P=\frac{V^{2}}{R}=\frac{(7.5 \mathrm{~V})^{2}}{0.042 \Omega}=1300 \mathrm{~W}
$$

d. Calculate the energy required to power the circuit if it runs for 4.5 minutes.

$$
\begin{aligned}
& W=P t=(1400 \mathrm{~W})(270 \mathrm{~s})=3.8 \times 10^{5} \mathrm{~J} \\
& \mathrm{~W}=\mathrm{Pt}=(1300 \mathrm{~W})(270 \mathrm{~s})=3.5 \times 10^{5} \mathrm{~J}
\end{aligned}
$$

