Name \qquad Answer Key
Honors Physics
Period \qquad

Date \qquad
Electric Circuits WS \#10H
Mrs. Nadworny

Combination Circuits

Directions: Read online textbook pages 746-751. Solve the following problems using the GUESS method and proper significant figures. Be sure to show ALL work.

1. A circuit contains five resistors as shown. The total current flowing through the circuit is 3.71 A .

a. Calculate the equivalent resistance of the circuit.

- Step 1:

$$
\begin{aligned}
& \frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{1}{6.0 \Omega}+\frac{1}{6.0 \Omega}=\frac{2}{6.0} \\
& R_{e q}=6 / 2=3.0 \Omega
\end{aligned}
$$

- Step 2:

$$
R_{e q}=R_{1}+R_{2}=5.0 \Omega+3.0 \Omega=8.0 \Omega
$$

- Step 3:

$$
R_{e q}=R_{1}+R_{2}=2.0 \Omega+6.0 \Omega=8.0 \Omega
$$

- Step 4:

$$
\begin{aligned}
& \frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{1}{8.0 \Omega}+\frac{1}{8.0 \Omega}=\frac{2}{8.0} \\
& R_{e q}=8 / 2=4.0 \Omega
\end{aligned}
$$

b. Calculate the total voltage provided by the cell.

$$
V_{T}=1 \cdot R=(3.71 \mathrm{~A})(4.0 \Omega)=15 \mathrm{~V}
$$

2. A circuit contains four resistors (20. ohms, 30. ohms, 50. ohms, and 20. ohms) as shown. The total voltage provided by the cell is 10 . volts.

a. Calculate the equivalent resistance of the circuit.

$$
\begin{gathered}
\frac{1}{R_{e q}}=\frac{1}{R_{2}}+\frac{1}{R_{2}}=\frac{1}{30 . \Omega}+\frac{1}{50 . \Omega} \\
R_{e q}=19 \Omega \\
R_{e q}=R_{1}+R_{2,3}+R_{4}=20 . \Omega+19 \Omega+20 . \Omega=59 \Omega
\end{gathered}
$$

b. Calculate the total current flowing through the circuit.

$$
I=\frac{V}{R}=\frac{10 \cdot \mathrm{~V}}{59 \Omega}=0.17 \mathrm{~A}
$$

c. Calculate the voltage across each resistor.

$$
\begin{gathered}
V_{1}=I_{1} \cdot R_{1}=(0.17 \mathrm{~A})(20 . \Omega)=3.4 \mathrm{~V} \\
V_{4}=I_{4} \cdot R_{4}=(0.17 \mathrm{~A})(20 . \Omega)=3.4 \mathrm{~V} \\
V_{2,3}=V_{T}-V_{1}-V_{4}=10 . \mathrm{V}-3.4 \mathrm{~V}-3.4 \mathrm{~V}=3.2 \mathrm{~V}(=3 \mathrm{~V})
\end{gathered}
$$

