Name \qquad
Honors Physics
Period \qquad

Date \qquad
Gravity and Circles WS \#6H
Mrs. Nadworny

Vertical Circles

Directions - Solve the following problems using the GUESS method and correct significant figures. Be sure to show ALL work!

Questions 1 and 2 refer to the following:
A roller coaster cart starts from rest and accelerates, due to gravity, down a track. The cart starts at a height that enables it to complete a loop in the track. [Neglect friction.]

1. Which diagram best represents the path followed by an object that falls off the cart when the cart is at point D ?
A)

B)

C)

(D) \downarrow
2. The magnitude of the centripetal force keeping the cart in circular motion would be greatest at point
A) A
B) B
C) C
D) D
3. A child with a mass of 40.0 kilograms rides on a Ferris wheel as shown below. The child moves in a vertical circle of radius 14.8 m at a constant speed of $3.10 \mathrm{~m} / \mathrm{s}$. Calculate the magnitude of the Ferris wheel's supportive force on the child at the top AND bottom.

Top
$F_{\text {net }}=F_{c}=\frac{m v^{2}}{r}$
$F_{N}=F_{g}-\frac{m v^{2}}{r}$
$F_{N}=m g-\frac{m v^{2}}{r}$
$F_{N}=(40.0 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)-\frac{(40.0 \mathrm{~kg})(3.10 \mathrm{~m} / \mathrm{s})^{2}}{14.8 \mathrm{~m}}$
$\mathrm{F}_{\mathrm{N}}=366 \mathrm{~N}$

Bottom

$$
\begin{aligned}
& F_{\text {net }}=F_{c}=\frac{m v^{2}}{r} \\
& F_{N}-F_{g}=\frac{m v^{2}}{r} \\
& F_{N}=\frac{m v^{2}}{r}+m g \\
& F_{N}=\frac{(40.0 \mathrm{~kg})(3.10 \mathrm{~m} / \mathrm{s})^{2}}{14.8 \mathrm{~m}}+(40.0 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& F_{N}=418 \mathrm{~N}
\end{aligned}
$$

