Name \qquad Answer Key

Date \qquad
Vectors/Projectiles WS \#6H
Mrs. Nadworny

(16 pts)

Various Vector Problems

Directions - Solve the following problems using the method learned in class. Show ALL work neatly using proper units, significant figures and the GUESS method where appropriate.

1. Two ropes pull on a log. The first rope pulls with a force of 14.0 newtons at 16.0°. The second rope pulls with a force of 16.5 newtons at 309°. What is the resultant force?

(2 pts)

1. Break vector into components.
$\mathrm{F}_{1 \mathrm{x}}=14.0 \mathrm{~N}\left(\cos 16.0^{\circ}\right)=13.5 \mathrm{~N}$ right
$F_{1 y}=14.0 \mathrm{~N}\left(\sin 16.0^{\circ}\right)=3.86 \mathrm{~N}$ up
$\mathrm{F}_{2 \mathrm{x}}=16.5 \mathrm{~N}(\cos 309)=10.4 \mathrm{~N}$ right
$F_{2 y}=16.5 \mathrm{~N}(\sin 309)=12.8 \mathrm{~N}$ down
(2 pts)
2. Sum of x and y components

$$
\begin{aligned}
& F_{\text {net } X}=F_{1 x}+F_{2 x}=13.5 \mathrm{~N}+(10.4 \mathrm{~N})=23.9 \mathrm{~N} \text { right } \\
& F_{\text {net }} y=F_{1 y}+F_{2 y}=3.86 \mathrm{~N}+-12.8 \mathrm{~N}=8.9 \mathrm{~N} \text { down }
\end{aligned}
$$

(2 pts)
3. Magnitude of net force

Fnet $=\left(F_{x}{ }^{2}+F_{y^{2}}\right)^{1 / 2}=\left(23.9 N^{2}+-8.9 N^{2}\right)^{1 / 2}=26 N$
4. Find the angle (gives you direction)

$$
\theta=\tan ^{-1}(\mathrm{O} / \mathrm{A})=\tan ^{-1}(-8.9 \mathrm{~N} / 23.9 \mathrm{~N})=-20.0
$$

2. Use the diagram to the right to answer the questions.

$$
V_{A G}=20 . \mathrm{m} / \mathrm{s} \quad V_{B G}=28 \mathrm{~m} / \mathrm{s}
$$

a. What is the relative velocity of car B with respect to car A ? Remember to include angle and direction.

$$
\begin{aligned}
& \overrightarrow{\mathrm{v}}=\sqrt{\mathrm{v}_{\mathrm{y}}{ }^{2}+\mathrm{v}_{\mathrm{x}}{ }^{2}} \\
& =\sqrt{(20 . \mathrm{m} / \mathrm{s})^{2}+(28 \mathrm{~m} / \mathrm{s})^{2}} \\
& =34 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
\theta & =\tan ^{-1}\left(\frac{v_{x}}{v_{y}}\right) \\
& =\tan ^{-1}\left(\frac{20 \cdot \mathrm{~m} / \mathrm{s}}{28 \mathrm{~m} / \mathrm{s}}\right) \\
& =36^{\circ} \mathrm{N} \text { of } \mathrm{W}
\end{aligned}
$$

(3 pts) b. What is the relative velocity of car A with respect to car B? Remember to include angle and direction.
20. m/s

$$
\begin{array}{ll}
\overrightarrow{\mathrm{v}}=\sqrt{\mathrm{v}_{\mathrm{y}}{ }^{2}+\mathrm{v}_{\mathrm{x}}{ }^{2}} & \theta=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right) \\
& =\sqrt{(20 . \mathrm{m} / \mathrm{s})^{2}+(28 \mathrm{~m} / \mathrm{s})^{2}}
\end{array} \quad=\tan ^{-1}\left(\frac{28 \mathrm{~m} / \mathrm{s}}{20 . \mathrm{m} / \mathrm{s}}\right) .
$$

Answers in size order: 26, 36, 54, 340.

