\qquad
\qquad
Physics \qquad Gravity/Circles/Kepler WS \#6
Period

Universal Gravitation \& Circular Motion REVIEW

1. A star with a mass of $2.13 \times 10^{17} \mathrm{~kg}$ and planet Blue, which has a mass of $4.13 \times 10^{22} \mathrm{~kg}$, are separated by a distance of $4.8 \times 10^{11} \mathrm{~m}$.
a. Calculate the gravitational attractive force between the star and Blue.
$F_{G}=\frac{G m_{1} m_{2}}{r^{2}}=\frac{\left(6.67 \times 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}^{2}}\right)\left(2.13 \times 10^{17} \mathrm{~kg}\right)\left(4.13 \times 10^{22} \mathrm{~kg}\right)}{\left(4.8 \times 10^{11} \mathrm{~m}\right)^{2}}=2.5 \times 10^{6} \mathrm{~N}$ toward
b. Calculate the acceleration due to gravity on planet Blue if it has a radius of 3.26×10^{6} meters.

$$
g=\frac{G m_{1}}{r^{2}}=\frac{\left(6.67 \times 10^{-11} \frac{\mathrm{~N}^{2} \mathrm{~m}^{2}}{\mathrm{~kg}^{2}}\right)\left(4.13 \times 10^{22} \mathrm{~kg}\right)}{\left(3.26 \times 10^{6} \mathrm{~m}\right)^{2}}=0.259 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \text { down }
$$

$$
F_{\text {grav }}=m g=(95 \mathrm{~kg})\left(0.259 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)=25 \mathrm{~N} \text { down }
$$

2. Two objects, m_{1} and m_{2}, are separated by a distance r. What happens to the gravitational force between them when the following changes are made?
a. M_{1} is 9 times larger and the distance between them triples.

$$
F_{g}=\frac{G m m}{r^{2}}=\frac{(1)(9)(1)}{(3)^{2}}=\text { no change }
$$

b. The distance is cut in fourth.

$$
F_{g}=\frac{G m m}{r^{2}}=\frac{(1)(1)(1)}{(1 / 4)^{2}}=16 x \text { larger }
$$

c. M_{1} is doubled and m_{2} is 5 times larger.

$$
F_{g}=\frac{G m m}{r^{2}}=\frac{(1)(2)(5)}{1^{2}}=10 \times \text { larger }
$$

3. A student whirls a 19.96 g rubber stopper above their head on a string with a radius of 0.318 meters. The stopper completes 10 revolutions in 4.89 seconds. The force on the stopper is 1.04 newtons.
a. Calculate the Period of stopper.

$$
T=\frac{\text { time }}{\text { revolutions }}=\frac{4.89 \mathrm{~s}}{10}=0.489 \mathrm{~s}
$$

b. Calculate the speed of the stopper.

$$
v=\frac{2 \pi r}{T}=\frac{2 \pi(0.318 \mathrm{~m})}{0.489 \mathrm{~s}}=4.09 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

c. Calculate the centripetal acceleration using the speed.

$$
a_{c}=\frac{v^{2}}{r}=\frac{\left(4.09 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{0.318 \mathrm{~m}}=52.6 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \text { inward }
$$

d. Calculate the centripetal acceleration using the force.

$$
a_{c}=\frac{F_{c}}{m}=\frac{1.04 \mathrm{~N}}{0.01996 \mathrm{~kg}}=52.1 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \text { inward }
$$

4. Two rocks are floating in deep space far from the influences of other celestial bodies. One rock has a mass of 4.32 kg and the other has a mass of 8.71 kg . The attractive force between them is 0.03427 newtons. How far apart are they?

$$
d=\sqrt{\frac{G m_{1} m_{2}}{F_{G}}}=\sqrt{\frac{\left(6.67 \times 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}^{2}}\right)(4.32 \mathrm{~kg})(8.71 \mathrm{~kg})}{0.03427 \mathrm{~N}}}=.000271 \mathrm{~m}=2.71 \times 10^{-4} \mathrm{~m}
$$

5. A car is driving around a circular racetrack of radius 86.0 meters. It experiences a centripetal acceleration of $17.3 \mathrm{~m} / \mathrm{s}^{2}$ inward. What is the speed at which the car is traveling?

$$
v=\sqrt{a_{c} r}=\sqrt{\left(17.3 \frac{m}{s^{2}}\right)(86.0 m)}=38.6 \mathrm{~m} / \mathrm{s}
$$

6. An object of mass m is traveling around a circle of radius r with speed v.
a. What happens to the centripetal force if the mass is five times larger?

$$
F=\frac{m v^{2}}{r}=\frac{(5)\left(1^{2}\right)}{1}=5 x \text { larger }
$$

b. What happens to the centripetal force if the speed is doubled?

$$
F=\frac{m v^{2}}{r}=\frac{(1)(2)^{2}}{1}=\text { quadrupled }
$$

c. What happens to the centripetal force if the radius is cut in quarters?

$$
F=\frac{m v^{2}}{r}=\frac{(1)\left(1^{2}\right)}{(1 / 4)}=4 x \text { larger }
$$

d. What happens to the centripetal acceleration if the mass triples?

$$
a=\frac{v^{2}}{r}=\text { nothing }
$$

e. What happens to the centripetal acceleration if the radius is tripled?

$$
a=\frac{v^{2}}{r}=\frac{1^{2}}{3}=\frac{1}{3} \text { the size }
$$

7. A 2.6 kg stopper is twirled in a circle of radius 1.24 meters with a constant speed of $3.39 \mathrm{~m} / \mathrm{s}$. What is the tension in the rope?

$$
F_{c}=m a_{c}=\frac{m v^{2}}{r}=\frac{2.6 \mathrm{~kg}\left(3.39 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{1.24 \mathrm{~m}}=24 \mathrm{~N} \text { inward }
$$

8. What is the period of a ball being swung around in a circle of radius 6.71 meters at $6.4 \mathrm{~m} / \mathrm{s}$?

$$
T=\frac{2 \pi r}{v}=\frac{2 \pi(6.71 \mathrm{~m})}{\left(6.4 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}=6.6 \mathrm{~s}
$$

