Name \qquad Answer Key

Date \qquad
Honors Physics
Gravity/Circles/Kepler WS \#4H
Period \qquad Mrs. Nadworny

Centripetal Acceleration \& Force

Directions - Read textbook pages 257-262. Solve the following problems using the GUESS method and correct significant figures. Be sure to show ALL work!

1. In the diagram below, a cart travels clockwise at a constant speed in a horizontal circle.

At the position shown in the diagram, which arrow indicates the direction of the centripetal acceleration of the cart?
A) A
B) B
C) C
D) D
2. In the diagram below, S is a point on a car tire rotating at a constant rate.

Which graph best represents the magnitude of the centripetal acceleration of point S as a function of time?
A)

C)

D)

3. A 2.7 kg object is being swung in a circle of radius 3.6 meters with a constant acceleration of $6.4 \mathrm{~m} / \mathrm{s}^{2}$.
a. Calculate the speed of the object.

$$
v=\sqrt{a_{c} \cdot r}=\sqrt{\left(6.4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(3.6 \mathrm{~m})}=4.8 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

b. Calculate the force necessary to keep the object moving in a circle.

$$
F_{c}=m a_{c}=2.7 \mathrm{~kg}\left(6.4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)=17 \mathrm{~N} \text { inward }
$$

4. Sid E. Leitz is practicing his lasso skills for the big summer rodeo. He ties a 35 kg mass to the end of a rope and is swinging it at a constant speed of $12 \mathrm{~m} / \mathrm{s}$. The tension in the rope is 2500 N. Calculate the radius of the circle.

$$
r=\frac{m v^{2}}{F_{c}}=\frac{35 k g\left(12 \frac{m}{s}\right)^{2}}{2500 \mathrm{~N}}=2.0 \mathrm{~m}
$$

5. An object of mass m is moving in a circle of radius r at a speed v.
a. What happens to the centripetal force if mass is doubled?

$$
F_{c}=\frac{m v^{2}}{r}=\frac{(2)(1)^{2}}{1}=2 \quad \text { Doubled }
$$

b. What happens to the centripetal force if speed is doubled?

$$
F_{c}=\frac{m v^{2}}{r}=\frac{(1)(2)^{2}}{1}=4 \quad \text { Quadrupled }
$$

c. What happens to the centripetal force if the radius is cut in half?

$$
F_{c}=\frac{m v^{2}}{r}=\frac{(1)(1)^{2}}{1 / 2}=2 \quad \quad \text { Doubled }
$$

d. What happens to the centripetal acceleration if the mass is quadrupled?

$$
a_{c}=\frac{v^{2}}{r}=\frac{1^{2}}{1}=1 \quad \text { Nothing because mass has no effect on acceleration }
$$

e. What happens to the centripetal acceleration if the radius is tripled?

$$
a_{c}=\frac{v^{2}}{r}=\frac{(1)^{2}}{3}=1 / 3 \quad 1 / 3 \text { as big }
$$

