Name \qquad
Honors Physics
Period \qquad

Date \qquad
Gravity and Circles WS \#4
Mrs. Nadworny

Centripetal Acceleration \& Force

Directions - Read textbook pages 257-262. Solve the following problems using the GUESS method and correct significant figures. Be sure to show ALL work!

1. In the diagram below, a cart travels clockwise at a constant speed in a horizontal circle.

At the position shown in the diagram, which arrow indicates the direction of the centripetal acceleration of the cart?
A) A
B) B
C) C
D) D
2. In the diagram below, S is a point on a car tire rotating at a constant rate.

Which graph best represents the magnitude of the centripetal acceleration of point S as a function of time?
A)

B)

C)

D)

3. A 2.7 kg object is being swung in a circle of radius 3.6 meters with a constant acceleration of $6.4 \mathrm{~m} / \mathrm{s}^{2}$.
a. Calculate the speed of the object.
b. Calculate the force necessary to keep the object moving in a circle.
4. Sid E. Leitz is practicing his lasso skills for the big summer rodeo. He ties a 35 kg mass to the end of a rope and is swinging it at a constant speed of $12 \mathrm{~m} / \mathrm{s}$. The tension in the rope is 2500 N. Calculate the radius of the circle.
5. An object of mass m is moving in a circle of radius r at a speed v.
a. What happens to the centripetal force if mass is doubled?
b. What happens to the centripetal force if speed is doubled?
c. What happens to the centripetal force if the radius is cut in half?
d. What happens to the centripetal acceleration if the mass is quadrupled?
e. What happens to the centripetal acceleration if the radius is tripled?

