Name \qquad Answer Key
Honors Physics
Period \qquad

Date \qquad
Gravity and Circles WS \#3
Mrs. Nadworny

Circular Motion

Directions -Solve the following problems using the GUESS method and correct significant figures. Be sure to show ALL work!

1. What is the period of a ball being swung around in a circle of radius 0.65 meters at $3.1 \mathrm{~m} / \mathrm{s}$?

$$
T=\frac{2 \pi r}{v}=\frac{2 \pi(0.65 m)}{\left(3.1 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}=1.3 \mathrm{~s}
$$

2. What is the speed of a rubber stopper traveling in a circle of radius 0.62 m if it takes 1.0 second to travel 10 times around the circle?

$$
v=\frac{2 \pi r}{T}=\frac{2 \pi(0.62 m)}{0.10 \mathrm{~s}}=39 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

3. Assuming that the Earth moves around the sun in a circular path with radius $1.5 \times 10^{8} \mathrm{~km}$ at a constant speed, and the period is one year, what is the orbital speed in $\mathrm{km} / \mathrm{hr}$?

$$
\begin{aligned}
& \left(\frac{1 y r}{1}\right)\left(\frac{365 d a y}{1 y r}\right)\left(\frac{24 \mathrm{hr}}{1 d a y}\right)=8760 \mathrm{hr} \\
& v=\frac{2 \pi r}{T}=\frac{2 \pi\left(1.5 \times 10^{8} \mathrm{~km}\right)}{8760 \mathrm{hr}}=1.1 \times 10^{5} \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

4. Four friends are on a merry-go-round as shown below. The friend on the outside keeps getting sick, no matter which friend it is. It takes 3.0 seconds for the merry-go-round to complete a full circle. Determine the speed for each friend. (You'll see why the outside kid always gets sick)

$$
\begin{aligned}
& v_{A}=\frac{2 \pi r}{T}=\frac{2 \pi(0.25 \mathrm{~m})}{3.0 \mathrm{~s}}=0.52 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& v_{B}=\frac{2 \pi r}{T}=\frac{2 \pi(0.50 \mathrm{~m})}{3.0 \mathrm{~s}}=1.0 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& v_{C}=\frac{2 \pi r}{T}=\frac{2 \pi(1.0 \mathrm{~m})}{3.0 \mathrm{~s}}=2.1 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& v_{D}=\frac{2 \pi r}{T}=\frac{2 \pi(2.0 \mathrm{~m})}{3.0 \mathrm{~s}}=4.2 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Answers in size order: $0.52,1.0,1.3,2.1,4.2,39,1.1 \times 10^{5}$

