Name \qquad
Honors Physics
Period \qquad
Date \qquad
Forces WS \#2H
Mrs. Nadworny

Newton's $2^{\text {nd }}$ Law

Directions - Read textbook pages 136-138. Solve the following problems using the GUESS method and correct significant figures. Be sure to show ALL work!

1. A constant unbalanced force is applied to an object for a period of time. Which graph best represents the acceleration of the object as a function of elapsed time?
A)

B)

D)

2. Determine the acceleration that will result when a 12 N net force is applied to the South
a. a 3.0 kg object.

$$
a=\frac{F_{\text {net }}}{m}=\frac{12 \mathrm{~N}}{3.0 \mathrm{~kg}}=4.0 \mathrm{~m} / \mathrm{s}^{2} \text { South }
$$

b. a 6.0 kg object.

$$
a=\frac{F_{\text {net }}}{m}=\frac{12 \mathrm{~N}}{6.0 \mathrm{~kg}}=2.0 \mathrm{~m} / \mathrm{s}^{2} \text { South }
$$

c. When mass is doubled the acceleration from the same force is HALF the size.
3. Chris P. Baecon applies a net force of 19.4 N to wheel barrow causing it to accelerate at a rate of $4.82 \mathrm{~m} / \mathrm{s}^{2}$. Determine the mass of the wheel barrow.

$$
\mathrm{m}=\frac{\mathrm{F}_{\text {net }}}{\mathrm{a}}=\frac{19.4 \mathrm{~N}}{4.82 \mathrm{~m} / \mathrm{s}^{2}}=4.02 \mathrm{~kg}
$$

4. David Purley, a racecar driver, survived a deceleration from $48.1 \mathrm{~m} / \mathrm{s}$ to $0 \mathrm{~m} / \mathrm{s}$ over a distance of 0.660 m when his car crashed. Assuming that Purley's mass is 70.0 kg , determine the average force acting on him during the crash.

$$
\begin{gathered}
a=\frac{v f^{2}-v i^{2}}{2 d}=\frac{(0 \mathrm{~m} / \mathrm{s})^{2}-(48.1 \mathrm{~m} / \mathrm{s})^{2}}{2(0.660 \mathrm{~m})}=-1750 \mathrm{~m} / \mathrm{s}^{2} \text { (backwards) } \\
\mathrm{F}=\mathrm{ma}=(70.0 \mathrm{~kg})\left(-1750 \mathrm{~m} / \mathrm{s}^{2}\right)=-1.23 \times 10^{5} \mathrm{~N} \text { (backwards) }
\end{gathered}
$$

