Name \qquad Answer Key

Date \qquad
Vectors/Projectiles WS \#10H Mrs. Nadworny

Angled Projectiles

Directions: Read textbook pages 102-104. Solve the following problems using the GUESS method. Show ALL work neatly using proper units and significant figures.

1. A golf ball is hit at an angle of 45° above the horizontal. What is the acceleration of the golf ball at its highest point in its trajectory? [Neglect friction]
A) $0.0 \mathrm{~m} / \mathrm{s}^{2}$
B) $6.9 \mathrm{~m} / \mathrm{s}^{2}$ horizontally
C) $9.8 \mathrm{~m} / \mathrm{s}^{2}$ upward
D) $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downward
2. The path of a projectile fired at a 30° angle to the horizontal is best described as
A) circular
B) parabolic
C) linear
D) hyperbolic
3. For a projectile launched at an angle, if it takes 4 seconds to reach the highest point, the total flight time is \qquad 8 seconds
4. Rhoda Bote throws a rock into the air with an initial speed of $49.0 \mathrm{~m} / \mathrm{s}$ at an angle of 58.0° with the horizontal. It returns to Earth at the same level from which it was launched.
a. Calculate the initial vertical speed of the rock.

$$
v_{i y}=v_{i} \sin \theta=\left(49.0 \frac{\mathrm{~m}}{\mathrm{~s}}\right)\left(\sin 58.0^{\circ}\right)=41.6 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

b. Calculate the initial horizontal speed of the rock.

$$
v_{i y}=v_{i} \cos \theta=\left(49.0 \frac{\mathrm{~m}}{\mathrm{~s}}\right)\left(\cos 58.0^{\circ}\right)=26.0 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

c. Calculate how long it was in the air.

$$
\begin{aligned}
& \text { Use that } \mathrm{v}_{\mathrm{f}}=0 \text { at the top } \\
& \mathrm{t}_{\text {top }}=\frac{\Delta \mathrm{v}}{a}=\frac{0 \frac{\mathrm{~m}}{\mathrm{~s}}-41.6 \frac{\mathrm{~m}}{\mathrm{~s}}}{-9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=4.24 \mathrm{~s} \\
& t_{\text {total }}=2 \times \mathrm{t}_{\text {top }}=2(4.24 \mathrm{~s})=8.48 \mathrm{~s}
\end{aligned}
$$

d. Calculate how far away it landed.

	x	y
		0 m
t		
		0 m / s^{2}
-9.81 $\mathrm{~m} / \mathrm{s}^{2}$		
v_{i}		
v_{f}		0 $\mathrm{~m} / \mathrm{s}$

$$
d_{x}=v_{i x} t=26.0 \frac{m}{s}(8.48 \mathrm{~s})=220 . m
$$

