
Electric Circuits Exam Review

Directions - Complete the following problems to help prepare you for the upcoming test.

2003 AP® PHYSICS B FREE-RESPONSE QUESTIONS

2. (15 points)

A circuit contains two resistors (10 Ω and 20 Ω) and two capacitors (12 μF and 6 μF) connected to a 6 V battery, as shown in the diagram above. The circuit has been connected for a long time.

- (a) Calculate the total capacitance of the circuit.
- (b) Calculate the current in the 10Ω resistor.
- (c) Calculate the potential difference between points A and B.
- (d) Calculate the charge stored on one plate of the $6\,\mu F$ capacitor.
- (e) The wire is cut at point P. Will the potential difference between points A and B increase, decrease, or remain the same?

18

____ increase

decrease

____ remain the same

Justify your answer.

a)
$$\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2}$$

$$= \frac{1}{12\mu F} + \frac{1}{6\mu F}$$

$$C_s = 4\mu F$$

d)
$$Q_T = Q_1 = Q_2$$

 $Q = C_T V_T$
 $= (4 \times 10^{-6} F)(4 V)$
 $= 16 \times 10^{-6} C$
 $= 1.6 \times 10^{-5} C$

②
$$|_{T} = |_{1} = |_{2} = \frac{V_{T}}{R_{T}}$$

= $\frac{GV}{30R}$
= $\frac{C}{20A}$

c)
$$V_2 = I_2 R_z = (.20A) 20.5$$

= 4V
 $V_{AB} // to V_2 = 4V$

=1.6 ×10 6

2002 AP® PHYSICS B FREE-RESPONSE QUESTIONS

3. (15 points)

Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits.

- (a) The two bulbs are first connected in parallel to a 120 V source.
 - i. Determine the resistance of the bulb rated 30 Wtand the current in it when it is connected in this circuit.
 - ii. Determine the resistance of the bulb rated 40 W and the current in it when it is connected in this circuit.
- (b) The bulbs are now connected in series with each other and a 120 V source.
 - i. Determine the resistance of the bulb rated 30 W and the current in it when it is connected in this circuit.
 - ii. Determine the resistance of the bulb rated 40 W and the current in it when it is connected in this circuit.
- (c) In the spaces below, number the bulbs in each situation described, in order of their brightness. (1 = brightest, 4 = dimmest)

- 3 30 W bulb in the series circuit) P=12R same I 40 W bulb in the series circuit (d) Calculate the total power dissipated by the two bulbs in each of the following cases.
 - i. The parallel circuit
 - ii. The series circuit

a) i)
$$R_1 = \frac{V^2}{P} = \frac{(120V)^2}{30W}$$

= 480.2
 $I_1 = V_1 R_1 = (120V)(480.2)$
= 25A

(i)
$$R_2 = \frac{V^2}{P} = \frac{(120V)^2}{40W}$$

= 360D
 $I_2 = V_2/R_2 = (120V)/360D$
= .33 A

d) i)
$$P_T = P_1 + P_2 = 30W + 40W = 70W$$

ii) $P_T = \frac{V^2}{R_T} = \frac{V^2}{R_1 + R_2} = \frac{(120V)^2}{4802 + 3602} = 17W$