

1. Determine the amount of signifcant figures in the following numbers.

1.00	0.13	0.89201	0.705
3	2	5	3
50.	37.0	5600	5600.
2	3	2	4

2. Complete the following mathematic problems.
a. 31.1 s

- 2.461 s
28.6 s
b. 24.82 kg
$\begin{array}{r}4.7 \mathrm{~kg} \\ +\quad 2 \mathrm{~kg} \\ \hline 32 \mathrm{~kg}\end{array}$
c. $2.22 \mathrm{~cd} \times 4.0=$
d. $50 \mathrm{~m} / 10.0 \mathrm{~m}=$
8.9 cd

5

3. Tilda Earth is measuring the mass of an apple. She performs 5 trials and her data is shown below.

0.2328 kg	0.2298 kg	0.2334 kg	0.2289 kg	0.2314 kg

a. Calculate the range of her data.

High - Low $=0.2334 \mathrm{~kg}-0.2289 \mathrm{~kg}=0.0045 \mathrm{~kg}$
b. Calculate the mean of her data.

Mean $=$ sum $/ \#$ trials $=1.1563 \mathrm{~kg} / 5=0.2313 \mathrm{~kg}$
c. Calculate the uncertainty in the mean of her data.

Uncert $=$ range $/ \#$ trials $=0.0045 \mathrm{~kg} / 5$ trials $=0.00090 \mathrm{~kg}$

Name \qquad Answer Key

Deffinitions

1. Unit - a standard quantity with which measurements can be compared.
2. SI System - an internationally recognized system that provides standardized units for scientific measurements
3. Derived Unit - combinations of two or more fundamental units and are used to simplify notation
4. Scientific Notation - consists of a number equal to or greater than one and less than ten followed by a multiplication sign and the base ten raised to some integral power
5. Prefix - a symbol preceding the base unit to form a new unit that is larger or smaller than the base unit by a multiple or submultiples of 10
6. Accuracy - a measurement very close to the accepted value found in a handbook
7. Precision - measurements taken of the same event are nearly identical
8. Range - The range is the highest value minus the lowest value
9. Mean - The mean is the arithmetic average
10. Uncertainty in the mean - This is the range divided by the number of data values

E@U@tDOS (NOT on Refinence Tables)

List the following SI Prefixes, their symbols, and their notation.

Prefix	Symbol	Notation
Tera	T	10^{12}
Giga	G	10^{9}
Mega	M	10^{6}
Kilo	k	10^{3}
Deci	d	10^{-1}
Centi	c	10^{-2}
Milli	m	10^{-3}
Micro	$\mathrm{\mu}$	10^{-6}
Nano	n	10^{-9}
Pico	p	10^{-12}

Use dimensional analysis to convert the following values:
a. $70 . \mathrm{km} / \mathrm{hr}$ to m / s

$$
\frac{70 . \mathrm{km}}{\mathrm{hr}}\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)\left(\frac{1 \mathrm{hr}}{60 \mathrm{~min}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)=19 \mathrm{~m} / \mathrm{s}
$$

b. 54.8 pg (picograms) to mg (milligrams)

$$
54.8 \mathrm{pg}\left(\frac{10^{-12} \mathrm{~g}}{1 \mathrm{pg}}\right)\left(\frac{1 \mathrm{mg}}{10^{-3} \mathrm{~g}}\right)=5.48 \times 10^{-8} \mathrm{mg}
$$

