

1. The circuit below shows three resistors connected in series to a 18.0 V battery.
a. Draw a voltmeter onto the diagram to measure the voltage of R_{2}. Draw an ammeter onto the diagram to measure the total current in the circuit.
b. If voltmeter V_{1} reads 4.7 V and voltmeter V_{2} reads 2.1 V , what is the potential drop across resistor R_{3} ?

$V_{3}=V_{T}-V_{1}-V_{2}$
$V_{3}=10.5 \mathrm{~V}-4.7 \mathrm{~V}-2.1 \mathrm{~V}=3.7 \mathrm{~V}$
c. Considering R_{1} has a resistance of 3.0 ohms, determine the current that passes through R_{1} and the following resistors (R_{2} and R_{3}) in the circuit.
$I_{T}=I_{1}=I_{2}=I_{3}=\frac{V_{1}}{R_{1}}=\frac{4.7 \mathrm{~V}}{3.0 \Omega}=1.6 \mathrm{~A}$
d. Determine the resistance of R_{2} and R_{3}.
$R_{2}=\frac{V_{2}}{I_{2}}=\frac{2.1 \mathrm{~V}}{1.6 \mathrm{~A}}=1.3 \Omega$

$$
R_{3}=\frac{V_{3}}{I_{3}}=\frac{3.7 \mathrm{~V}}{1.6 \mathrm{~A}}=2.3 \Omega
$$

2. Using the circuit diagram below, solve for the following information.
a. Draw a voltmeter onto the diagram to measure the voltage of R_{1}. Draw an ammeter onto the diagram to measure the total current in the circuit.
b. The voltage across each resistor.

$$
V_{T}=V_{1}=V_{2}=V_{3}=24 \mathrm{~V}
$$

c. The current through each resistor.

$$
I_{1}=\frac{V_{1}}{R_{1}}=\frac{24 \mathrm{~V}}{14 \Omega}=1.7 \mathrm{~A} \quad I_{2}=\frac{V_{2}}{R_{2}}=\frac{24 \mathrm{~V}}{42 \Omega}=0.57 \mathrm{~A} \quad I_{3}=\frac{V_{3}}{R_{3}}=\frac{24 \mathrm{~V}}{56 \Omega}=0.43 \mathrm{~A}
$$

d. The equivalent resistance of the circuit.

$$
R_{T}=\frac{V_{T}}{I_{T}}=\frac{24 \mathrm{~V}}{(1.7 \mathrm{~A}+0.57 \mathrm{~A}+0.43 \mathrm{~A})}=8.9 \Omega \quad \begin{array}{ll}
\frac{1}{R_{\text {eq }}}=\frac{1}{R_{1}}+\frac{1}{R_{1}}+\frac{1}{R_{1}} \\
& \frac{1}{R_{\text {eq }}}=\frac{1}{14 \Omega}+\frac{1}{42 \Omega}+\frac{1}{56 \Omega} \\
R_{\text {eq }}=8.8 \Omega
\end{array}
$$

1. Current - the rate at which charge pass through a wire
2. Resistance - the opposition that a device or conductor present to the flow of electric current
3. Resistor - a device used in a circuit to limit current flow or provide a potential drop
4. Variable Resistor - a coil of resistance wire whose effective resistance can be varied by sliding a contact point
5. Voltmeter - a device used to measure the potential difference across a circuit
6. Ammeter - a device used to measure the current through a circuit
7. Power - the rate of conversion of electrical energy
8. Series Connection - a circuit in which all parts are connected end to end to provide a single path for the current
9. Parallel Connection - a circuit in which there are several paths for current flow
10. Kirchoff's Junction Rule - The total current going into a junction must equal the total current going out of a junction

11. $\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}$
12. $\mathrm{P}=\mathrm{V} \left\lvert\,=l^{2} \mathrm{R}=\frac{\mathrm{V}^{2}}{\mathrm{R}}\right.$

Series Connection

$$
\text { 6. } I=I_{1}=I_{2}=I_{3}=\ldots
$$

9. $I=I_{1}+I_{2}+I_{3}+\ldots$

$$
\text { 7. } V=V_{1}+V_{2}+V_{3}+\ldots
$$

$$
\text { 10. } V=V_{1}=V_{2}=V_{3}=\ldots
$$

$$
\text { 8. } R=R_{1}+R_{2}+R_{3}+\ldots
$$

11. $\frac{1}{R_{\text {eq }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots$

Symbols \& Units

Resistance	Potential Difference	Charge	Current	Power	Energy
R	V	q	I	P	W
Ω	V	C	A	W	J

