1. A balloon gains a charge of -3.7 pC after being rubbed on your hair. How many excess electrons is this?

$$
-3.7 \times 10^{-12} C\left(\frac{1 e}{1.60 \times 10^{-19} C}\right)=2.3 \times 10^{7} e
$$

2. In an experiment, moving a charge through an electric field requires 11 eV of work. How much work is this in Joules?

$$
11 \mathrm{eV}\left(\frac{1.60 \times 10^{-19} \mathrm{~J}}{1 \mathrm{eV}}\right)={ }^{+} 1.8 \times 10^{-18} \mathrm{~J}
$$

3. Calculate the electric force between two electrons if their centers are 2.7×10^{-3} meters apart.
$F_{e}=\frac{k q_{1} q_{2}}{r^{2}}=\frac{\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)}{\left(2.7 \times 10^{-3} \mathrm{~m}\right)^{2}}=3.2 \times 10^{-23} \mathrm{~N}$ repel
4. A charge of +48 C experiences a force of 0.8 N when located a certain position in the electric field produced by a second charge. What is the magnitude of the electric field strength at that point?

$$
E=\frac{F}{q}=\frac{0.8 N}{48 C}=0.02 \frac{N}{C}
$$

5. If 56 joules of work is required to move 7.0 coulombs of charge between two plates, the potential difference between the two plates is

$$
V=\frac{W}{q}=\frac{56 \mathrm{~J}}{7.0 \mathrm{C}}=8.0 \mathrm{~V}
$$

Sketch the following graphical relationships

Charge

Electrostaitics

Deffinitoos

1. Electrostatics - the study of electrical charges that can be collected and held in one place
2. Insulators - materials through which charges will not move easily
3. Conductors - materials that allow charges to move about easily.
4. Grounding - Removing excess charge from a charged body by connecting it to the Earth
5. Polarization - to cause one side of an object to become negative, and the other side to be positive
6. Conduction - charging a neutral object by touching it with a charged object
7. Induction - causing a neutral object to become charged without direct contact between the charged object and the neutral object
8. Electric Field - a vector quantity that relates the force exerted on a test charge to the size of the test charge
9. Electric Potential Energy - potential energy associated with an object due to its position relative to a source of electric force
10. Potential Difference - difference in potential energy between two points
11. Electronvolt - the energy that an electron (or proton) gains when accelerated through a potential difference of 1 Volt

をণu@tions (om Reference Tables)

5.

$$
1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}
$$

E@u@tions (Nor on Reference Tables)

Draw the electric field around $\overline{\text { each }} \overline{\text { an }} \overline{\text { case }}$ below.

