\qquad
Answer Key
Date: \qquad

Measurement \& Mathematics

In order to prepare for Test \#1 I suggest you do the following:

1. Read chapter 1.
2. Terms to know: scientific notation, significant digits, fundamental units, derived units, metric units and prefixes, base unit, SI units, dimensional analysis (factor/label method), order of magnitude estimations, independent variable, dependent variable, control variable, hypothesis, range, mean/average, uncertainty in mean/average, percent error, accuracy, precision, graph relationships.
3. Be able to make order of magnitude estimations.
4. What are the seven fundamental units in the SI system? What are derived units? Give an example.
Fundamental = building block units - cannot be broken down (see page 2 for list) Derived = combinations of two or more fundamental units
5. What is a base unit? Give an example. How does it differ from a fundamental unit? Base unit = unit without prefix = gram Fundamental - can have prefix = kilogram
6. Know how to put numbers into proper scientific notation. What is the addition/subtraction rule? What is the multiplication/division rule?
7. Know how to convert units within the metric system using metric prefixes. Be able to use the factor/label (dimensional analysis) method.
8. Be able to tell the number of significant digits in a number.
9. Know how to report the answers to calculations with the correct number of significant digits. What is the addition/subtraction rule? What is the multiplication/division rule?
10. Identify some reasons why a measurement is always uncertain.

Cannot calibrate tools to infinitely smallest amount - human estimation when measuring
11. Be able to calculate the mean, range, and the uncertainty in the mean of a set of data.

$$
\text { Range }=\text { high }- \text { low } \quad \text { Average }(\text { Mean })=\text { sum of values/\# trials Uncertainty }=\text { range } / \# \text { trials }
$$

12. How does a value become an "accepted" value?

Repeated measurements over time or multiple trials averaged together.
13. Be able to pick out independent, dependent and control variables from an experiment. Independent = you control and set interval Dependent = what measuring
14. What is the difference between accuracy and precision? Give an example.

Accuracy = close to correct value
Precise = values close to each other
15. Be able to graph data and draw a best fit line or curve. Be able to calculate the slope of a line. Be able to write the general and specific equation of the line.
16. Know how to sketch the five most common types of relationships and give their general equations.

Solve the problems below using correct significant figures and scientific notation.

1. State the number of significant figures present in the following figures.
a) 8743 m
b) 0.045 K
c) $86,002 \mathrm{~kg}$
d) 2000 s
4

e) $3600 . \mathrm{N}$
f) 90.00 m
g) .00100 s
h) 50.050 J
4
4
3
5
2. 287.6 s
36.841 s
$\begin{array}{r}+1.43 \mathrm{~s} \\ \hline 325.871\end{array}$
325.871

Least \# decimals
3. $27.61 \mathrm{~mm} \quad 27.61 \mathrm{~mm}$ $-.0077 \mathrm{~m} \quad-7.7 \mathrm{~mm}$

Convert units Least \# decimals
$=19.9 \mathrm{~mm}$
4. $8.6342 \mathrm{~s} \times 71.1 \mathrm{~s}=613.892 \mathrm{~s}^{2}=614 \mathrm{~s}^{2} \quad 5 .(207.1 \mathrm{~m}) /(10 \mathrm{~m})=20.71=20$
east \# s.f.
7. $\left(7.30 \times 10^{2} \mathrm{~m}\right)\left(5.0 \times 10^{5} \mathrm{~m}\right)=$
$.0914 \times 10^{4} \mathrm{~m}+8.6 \times 10^{4} \mathrm{~m}$
$=3.65 \times 10^{8} \mathrm{~m}^{2}=3.7 \times 10^{8} \mathrm{~m}^{2}$
$=8.6914 \times 10^{4} \mathrm{~m}=8.7 \times 10^{4} \mathrm{~m}$

$=3.65 \times 10^{8} \mathrm{~m}^{2}=3.7 \times 10^{8} \mathrm{~m}^{\mathbf{2}}$
Same power of 10 Least \# decimals
Least \# s.f.

8. $\left(3.14 \times 10^{6} \mathrm{~m}\right) /\left(2.9 \times 10^{8} \mathrm{~m}\right)=$ $=0.010828=0.011$ OR 1.1×10^{-2} \square Least \# s.f.
9. Using dimensional analysis convert $56 \mathrm{~m} / \mathrm{s}$ into $\mathrm{mi} / \mathrm{hr}$.

$$
\left(\frac{56 m}{s}\right)\left(\frac{3600 s}{1 h r}\right)\left(\frac{1 m i}{1609 m}\right)=\frac{201600 m i}{1609 h r}=125 \frac{m i}{h r}=130 \frac{\mathrm{mi}}{\mathrm{hr}}
$$

Because 56 only has 2 s.f., 125 must round up to match
10. How many meters are in a 67.2 gigameter?

$$
\left(\frac{67.2 \mathrm{Gm}}{1}\right)\left(\frac{10^{9} \mathrm{~m}}{1 \mathrm{Gm}}\right)=6.72 \times 10^{10} \mathrm{~m}
$$

11. How many micrograms are in 1 kilogram?

$$
\left(\frac{1 \mathrm{~kg}}{1}\right)\left(\frac{10^{3} g}{1 \mathrm{~kg}}\right)\left(\frac{1 \mu \mathrm{~g}}{10^{-6} g}\right)=1 \times 10^{9} \mu g
$$

It is easier to go to the base unit first, then another prefix
12. Estimate the approximate height of a child in meters using magnitudes of 10.

$$
10^{\circ} \mathrm{m}=1 \mathrm{~m}
$$

(versus $10^{1}=10 \mathrm{~m}$ or $10^{-1}=10$ centimeters)
13. Estimate the approximate weight of a couch in kilograms using magnitudes of 10 .

$$
\begin{gathered}
10^{2} \mathrm{~kg}=100 \mathrm{~kg} \\
\text { (versus } 10^{1}=10 \mathrm{~kg} \text { or } 10^{3}=1,000 \mathrm{~kg} \text {) }
\end{gathered}
$$

14.

a. Measure the diameter of the basketball in centimeters. Report the value in meters. Remember to include uncertainty.

$$
\begin{gathered}
3.39 \mathrm{~cm} \pm .02 \mathrm{~cm} \\
0.0339 \mathrm{~m} \pm 0.0002 \mathrm{~m}
\end{gathered}
$$

b. Measure the mass of the object in grams. Report the value in kilograms. Remember to include uncertainty.
c. What is the elapsed time in seconds? Remember to include uncertainty.

$204.1 \mathrm{~s} \pm 0.2 \mathrm{~s}$
Remember to convert minutes to seconds
15. A student attempts to measure the length of a floor tile in physics class. The results of five trials are listed below.

Trial 1	Trial 2	Trial 3	Trial 4	Trial 5
56.30 cm	57.10 cm	56.75 cm	56.42 cm	57.02 cm

a. Calculate the range of the data.

$$
\text { Range }=\text { High }- \text { Low }=57.10 \mathrm{~cm}-56.30 \mathrm{~cm}=0.80 \mathrm{~cm}
$$

b. Calculate the mean (average) of the data.
$\operatorname{avg}=\frac{\text { sum }}{\# \text { trials }}=\frac{56.30 \mathrm{~cm}+57.10 \mathrm{~cm}+56.75 \mathrm{~cm}+56.42 \mathrm{~cm}+57.02 \mathrm{~m}}{5}=\frac{283.59 \mathrm{~m}}{5}=56.72 \mathrm{~cm}$
c. Calculate the uncertainty in the mean.

To get full credit on a, b, c, and e, you must show equation, substitute with units, and report your final answer with sig figs and units.

$$
\text { uncertainty }=\frac{\text { range }}{\# \text { trials }}=\frac{0.80 \mathrm{~cm}}{5}=0.16 \mathrm{~cm}
$$

d. As accurately as the student can determine based on this data, a floor tile's length is somewhere between what two values?

Between 56.88 cm and 56.56 cm

e. Your teacher reveals that the floor title's length is 56.78 cm , what is the percent error of the average value?

$$
\text { \%error }=\frac{\text { real }- \text { theoretical }}{\text { real }} \times 100=\frac{56.78 \mathrm{~cm}-56.72 \mathrm{~cm}}{56.78 \mathrm{~cm}} \times 100=0.1057 \%
$$

16. A student does a physics experiment in which she lets a toy car travel along the floor. At one minute intervals she records the distance in meters. Her data is summarized in the table below.

Time (min)	0	1	2	3	4	5
Distance (m)	0	1.1	2.2	3.0	4.2	5.1

a. Which is the independent variable?

Time - because she set it at specific intervals
b. Which is the dependent variable?

Distance - what she is measuring - depends on time interval selected

c. Graph the data properly in the space below, including a best-fit line or curve.

d. Calculate the slope of the best-fit line. Show all calculations here, including formula and substitutions with units.

$$
\text { slope }=\frac{\Delta y}{\Delta x}=\frac{3.6 m-1.3 m}{3.6 \mathrm{~min}-1.3 \mathrm{~min}}=1.0 \mathrm{~m} / \mathrm{min}
$$

To get full credit you must show equation, substitute with units, and report your final answer with sig figs and units.
e. According to your graph, what type of relationship is there between time and distance?

Direct
17. The mass of a high school football player is approximately
(A) $10^{\circ} \mathrm{kg}$
(B) $10^{1} \mathrm{~kg}$
(C) $10^{3} \mathrm{~kg}$
(D) $10^{2} \mathrm{~kg}$
18. The height of a doorknob above the floor is approximately
1 m
(A) $1 \times 10^{0} \mathrm{~m}$
(B) $1 \times 10^{1} \mathrm{~m}$
(C) $1 \times 10^{-2} \mathrm{~m}$
(D) $1 \times 10^{2} \mathrm{~m}$
19.How many significant figures are there in the number 304500 meters?
(A) 3
(B) 4
(C) 5
(D) 6

Zero to right only count
if decimal is present
20. Which one of the following is a fundamental unit?

Memorize!
(A) Ampere
(B) Coulomb
(C) 0 hm
(D) Volt
21.A student measures a distance several times. The readings lie between 49.8 cm and 50.2 cm . This measurement is best recorded as
(A) $50.0 \mathrm{~cm} \pm 0.4 \mathrm{~cm}$
(C) $50.0 \mathrm{~cm} \pm 0.2 \mathrm{~cm}$
(B) $49.8 \mathrm{~cm} \pm 0.4 \mathrm{~cm}$
(D) $49.8 \mathrm{~cm} \pm 0.2 \mathrm{~cm}$
22. The mass of an object is measured to be 18.65 kg and its volume $4.3 \mathrm{~m}^{3}$. If the density (mass per unit volume) is calculated from these values, to how many significant figures should it be expressed?
(A) 1
(B) 2
(C) 3
(D) 4
4.3 only has 2 s.f.,
which is lowest
23. Convert to meters: $78 \mu \mathrm{~m}$
(A) $7.8 \times 10^{-7} \mathrm{~m}$
(B) $7.8 \times 10^{-6} \mathrm{~m}$
(C) $7.8 \times 10^{-5} \mathrm{~m}$
(D) $7.8 \times 10^{6} \mathrm{~m}$
24.Convert to proper scientific notation: 902×10^{66}
(A) 9.02×10^{64}
(B) 9.02×10^{66}
(C) 9.02×10^{67}
(D) 9.02×10^{68}
25. Which of the following is a base unit?
(A) gram
(B) kilogram
(C) centimeter (D) nanosecond

No prefix

26. Report the answer to the correct number of significant digits: $57.783 \mathrm{~cm}-6.1 \mathrm{~cm}$

Least \# decimals
(A) $51 . .683 \mathrm{~cm}$
(B) 51.68 cm
(C) 51.7 cm
(D) 52 cm
27. Perform the following calculation and answer using the correct number of significant digits: 8.23 $\times 10^{-29} \div 5.2 \times 10^{-13}$
(A) 1.5×10^{-16}
(B) 1.6×10^{-16}
(C) 1.58×10^{-16}
(D) 2×10^{-16}

Least \# s.f.
28. Of the following, the smallest quantity is
(A) 0.635 km
(B) $0.635 \times 10^{4} \mathrm{~cm}$
(C) $6.35 \times 10^{4} \mathrm{~m}$
(D) $0.635 \times 10^{6} \mathrm{~mm}$
(E) $0.635 \times 10^{5} \mathrm{~m}$
29. Fifty five millimeters is approximately equivalent to
(A) 0.055 m
(B) 55 m
(C) 0.55 m
(D) 5.5 m
(E) 0.0055 m
30. Of the following, the largest quantity is
(A) 0.047 cm
(B) $47 \times 10^{-4} \mathrm{~cm}$
(C) $4.7 \times 10^{-2} \mathrm{~cm}$
(D) $0.00047 \times 10^{2} \mathrm{~cm}$
(E) $0.000047 \times 10^{4} \mathrm{~cm}$
31. The number 300,000,000 can be written as
(A) 3×10^{6}
(B) 3×10^{7}
(C) 3×10^{8}
(D) 3×10^{9}
(E) 3×10^{-9}
32.A millimeter is
(A) $10^{3} \mathrm{~m}$
(B) $10^{2} \mathrm{~m}$
(C) $10^{1} \mathrm{~m}$
(D) $10^{-3} \mathrm{~m}$
(E) $10^{-6} \mathrm{~m}$
33. Which of the following represents the same quantity as 6.50×10^{-3} ampere?
I. $\quad 6.50 \mathrm{~mA}$
II. $\quad 65.0 \times 10^{-4} \mathrm{~A}$
III. $\quad 0.00650 \mathrm{~A}$
IV. $\quad 65.0 \times 10^{-2} \mathrm{~A}$
(A) I, II, and III only
(B) I and III only
(C) II and IV only
(D) IV only
(E) none of them
34. Which of the following represents a derived unit?
I. Newton
II. Kilogram
III. Ampere
IV. Pascal
(A) I, III, and IV only
(B) I and IV only
(C) I only
(D) all of them
(E) none of them

Questions 35 through 37 are based upon the following graphs.
(A)

(B)

C)
(D)

(E)

35. Which of the graphs represents a direct relationship?
(A) A
(B) B
(C) C
(D) D
(E) E
36. Which of the graphs represents a quadratic relationship?
(A) A
(B) B
(C) C
(D) D
(E) E
37. In which graph is the slope a negative value?
(A) A
(B) B
(C) C
(D) D
(E) E

[^0]
[^0]:

