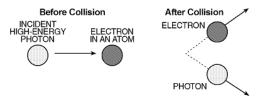
Name	Date
Honors Physics	Modern WS #2H
Period	Mrs. Nadworny

de Broglie Waves

Directions: Read online textbook pages 848 – 854. Solve the following problems using the GUESS method and proper significant figures. Be sure to show ALL work.

- 1. A photon of light carries
 - (A) energy, but not momentum


(C) momentum, but not energy

(B) both energy and momentum

(D) neither energy nor momentum

Questions 2 and 3 refer to the following:

The diagrams below show a photon and an electron before and after their collision.

- 2. Compared to the wavelength of the photon before its collision with the electron, the wavelength of the photon after the collision is
 - (A) longer
- (B) shorter
- (C) the same
- 3. Compared to the total momentum of the photon-electron system before the collision, the total momentum of the photon-electron system after the collision is
 - (A) greater
- (B) less

- (C) the same
- 4. Which of the following is evidence for the wave nature of the electron?
 - (A) Continuous energy spectrum in B- decay
 - (B) Electron diffraction from crystals
 - (C) Existence of atomic energy levels
 - (D) Existence of nuclear energy levels
- 5. A photon of energy E and wavelength λ is scattered from an electron initially at rest. What is the energy of the photon and the wavelength of the photon when the electron moves away?

	Energy of photon	Wavelength of photon
A.	greater than E	less than λ
B.	less than E	less than λ
C.	greater than E	greater than λ
D.	less than E	greater than λ

6.	What is the momentum of an x-ray photon whose wavelength is 1.3×10^{-9} m?
7.	Calculate the de Broglie wavelength of an electron that is traveling at 4.7×10^5 m/s. [Hint: Two-step question.]
8.	Calculate the de Broglie wavelength of a 0.37 kg baseball that is traveling at 19 m/s. [Hint: Two-step question.]

Answers in size order: 9.4×10^{-35} or 9.5×10^{-35} , 5.1×10^{-25} , 1.5×10^{-9}