Name				Date				
SI Physics				Lab #31 (4	10 pts)			
Period				Mrs. Nadw	vorny			
Partners:				Due Date				
		Simple Circu	it	NO Lab Write-Up Require				
Materials				- * *	···· ·································	uicų		
 100 Ω resistor 	 battery pack 	 several batteries 	• ammeter	 voltmeter (multimeter) 	• wires			

Procedure

- 1. Build a simple electric circuit that can be used to measure the current through a resistor and the potential difference across the resistor.
- 2. Draw a circuit diagram for this circuit using appropriate symbols from the *Reference Tables* in the space below. (4 pts)
- 3. Build the circuit using one battery. Measure the potential difference and current. Have this checked by your teacher. Record your data in the table.
- 4. Increase the number of batteries and repeat step 3. Do this for several batteries.
- 5. Disconnect your circuit and put your equipment away when you have enough data.

(9 pts)

Trial	 ±	
1		
2		
3		
4		
5		

Graph (11 pts)

- Create a graph of Current vs. Potential Difference.
 - Title your graph with an appropriate title.
 - Label each axis with the appropriate variable and unit.
 - o Mark an appropriate scale according to your data.
 - o Plot each data point.
 - Draw a best fit line. (Equal number of points above and below line)

 -	-	-	-	-	_	_	 	-	_	 -	_	 -	_	-	
							_								

Data Analysis

- 1. Calculate the slope of your best fit line. Show all calculations with equation, substitution with units, and answer in decimal format with units. (4 pts)
- 2. Determine the physics formula that relates to the variables that you graphed. (2 pts)
- 3. What physical quantity is represented by the slope of the graph? (2 pts)
- 4. Calculate resistance of your resistor using your slope. Show all calculations with equation, substitution with units, and answer with units. (4 pts)
- 5. Calculate a percent error between your value of resistance and the accepted value. Show all calculations with equation, substitution with units, and answer with units. (4 pts)