Name	Date	
AP Physics	AP Review # 17	
Period	Mrs. Nadworny	

AP Review # 17

1. (10 points - suggested time 20 minutes)

The figure above shows a cross section of a drinking glass (index of refraction 1.52) filled with a thin layer of liquid (index of refraction 1.33). The bottom corners of the glass are circular arcs, with the bottom right arc centered at point O. A monochromatic light source placed to the right of point P shines a beam aimed at point O at an angle of incidence O. The flat bottom surface of the glass containing point P is frosted so that bright spots appear where light from the beam strikes the bottom surface and does not reflect. When O is frosted so that bright spots appear on the bottom surface of the glass. The spot closer to point P will be referred to as P is frosted so that bright spots appear on the bottom surface of the glass. The spot closer to point P will be referred to as P is frosted so that bright spots appear on the bottom surface of the glass. The spot closer to point P will be referred to as P is frosted so that bright spots appear on the bottom surface of the glass. The spot closer to point P will be referred to as P is frosted so that bright spots appear on the bottom surface of the glass. The spot closer to point P will be referred to as P is frosted so that bright spots appear on the bottom surface of the glass.

(a) In a coherent paragraph-length answer, describe the processes involved in the formation of spots X and Y when $\theta = \theta_1$ Include an explanation of why spot Y is located farther from point P than spot X is and what factors affect the brightness of the spots.

When the beam of light striked the glass-liquid boundary, some of it is reflected and some is refracted. The part that refracts then that reflects creates spot X. The part that refracts then strikes the liquid-air boundary where it again partially reflects and partially refracts. The part that of that beam that reflects from the air-liquid boundary travels back through the liquid t glass to create spot Y.

The brightness of the spots dependson how much of the light is reflected instead of refracted. As more light reflects, the brightness increases.

(1) x is reflect glass-liquid

(1) y is refract as enter thave

(1) Y is reflect at air liquid

(1) Yis farther, geometry of path

(1) brightness

continued on back >

- (b) When θ is increased to θ_2 , one of the spots becomes brighter than it was before, due to total internal reflection.
 - i. On the figure below, draw a ray diagram that clearly and accurately shows the formation of spots X and Y when $\theta=\theta_2$.

ii. Which spot, X or Y, becomes brighter than it was before due to total internal reflection? Explain your reasoning.

I would become brighter because all of the light would be reflected at the air-liquid interface instead of being split.

- (c) When θ is further increased to θ_3 , one of the spots disappears entirely.
 - i. On the figure below, draw a ray diagram that clearly and accurately shows the formation of the remaining spot, X or Y, when $\theta = \theta_3$.

ii. Indicate which spot, X or Y, disappears. Explain your reasoning in terms of total internal reflection.

interface instead of some continuing into the liquid to be reflected back to spot Y.