CONSTANTS AND CONVERSION FACTORS						
Proton mass, $m_p = 1.67 \times 10^{-27}$ kg	Electron charge magnitude, $e = 1.60 \times 10^{-19} \text{ C}$					
Neutron mass, $m_n = 1.67 \times 10^{-27}$ kg	1 electron volt, 1 eV = 1.60×10^{-19} J					
Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$	Speed of light, $c = 3.00 \times 10^8 \text{ m/s}$					
Avogadro's number, $N_0 = 6.02 \times 10^{23} \text{ mol}^{-1}$	Universal gravitational constant, $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$					
Universal gas constant, $R = 8.31 \text{ J/(mol}\cdot\text{K})$	Acceleration due to gravity at Earth's surface, $g = 9.8 \text{ m/s}^2$					
Boltzmann's constant, $k_B = 1.38 \times 10^{-23} \text{ J/K}$						
1 unified atomic mass unit,	$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV}/c^2$					
Planck's constant,	$h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$					
	$hc = 1.99 \times 10^{-25} \text{ J} \cdot \text{m} = 1.24 \times 10^3 \text{ eV} \cdot \text{nm}$					
Vacuum permittivity,	$\boldsymbol{\varepsilon}_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$					
Coulomb's law constant, $k = 1/4\pi\varepsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$						
Vacuum permeability,	$\mu_0 = 4\pi \times 10^{-7} \text{ (T-m)/A}$					
Magnetic constant, $k' = \mu_0/4\pi = 1 \times 10^{-7} \text{ (T-m)/A}$						
1 atmosphere pressure, $1 \text{ atm} = 1.0 \times 10^5 \text{ N/m}^2 = 1.0 \times 10^5 \text{ Pa}$						

	meter,	m	mole,	mol	watt,	W	farad,	F
LINUT	kilogram,	kg	hertz,	Hz	coulomb,	С	tesla,	Т
UNIT SYMBOLS	second,	S	newton,	Ν	volt,	V	degree Celsius,	°C
SIMBOLS	ampere,	А	pascal,	Pa	ohm,	Ω	electron volt,	eV
	kelvin,	Κ	joule,	J	henry,	Н		

PREFIXES					
Factor	Prefix	Symbol			
10 ¹²	tera	Т			
10 ⁹	giga	G			
10^{6}	mega	М			
10 ³	kilo	k			
10^{-2}	centi	с			
10^{-3}	milli	m			
10 ⁻⁶	micro	μ			
10 ⁻⁹	nano	n			
10 ⁻¹²	pico	р			

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
sin θ	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
tan θ	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	8

The following conventions are used in this exam.

- I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- II. In all situations, positive work is defined as work done <u>on</u> a system.
- III. The direction of current is conventional current: the direction in which positive charge would drift.
- IV. Assume all batteries and meters are ideal unless otherwise stated.
- V. Assume edge effects for the electric field of a parallel plate capacitor unless otherwise stated.
- VI. For any isolated electrically charged object, the electric potential is defined as zero at infinite distance from the charged object.

ADVANCED PLACEMENT PHYSICS 2 EQUATIONS, EFFECTIVE 2015

MECHANICS

ELECTRICITY AND MAGNETISM

MECH	ANICS	ELECTRICITY AND MAGNETISM		
$v_x = v_{x0} + a_x t$	a = acceleration A = amplitude	$\left \vec{F}_{E}\right = \frac{1}{4\pi\varepsilon_{0}} \frac{\left q_{1}q_{2}\right }{r^{2}}$	A = area B = magnetic field	
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	d = distance	0 7	C = capacitance	
2	E = energy F = force	$\vec{E} = \frac{\vec{F}_E}{q}$	d = distance E = electric field	
$v_r^2 = v_{r0}^2 + 2a_r(x - x_0)$	f = frequency	1	\mathcal{E} = electric field \mathcal{E} = emf	
<i>x x x x x x x y y y y y y y y y y</i>	I = rotational inertia	$\left \vec{E} \right = \frac{1}{4\pi\varepsilon_0} \frac{ q }{r^2}$	F = force	
$\vec{a} = \frac{\sum \vec{F}}{m} = \frac{\vec{F}_{net}}{m}$	K = kinetic energy	$4\pi \varepsilon_0 r^2$	I = current	
$u = \frac{1}{m} = \frac{1}{m}$	k = spring constant	$\Delta U_E = q \Delta V$	$\ell = \text{length}$	
	L = angular momentum	1 a	P = power	
$\left \vec{F}_{f}\right \le \mu \left \vec{F}_{n}\right $	$\ell = \text{length}$	$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$	Q = charge	
2	m = mass	0	q = point charge	
$a_c = \frac{v^2}{r}$	P = power	$\left \vec{E} \right = \left \frac{\Delta V}{\Delta r} \right $	R = resistance	
c r	p = momentum	$ \Delta r $	r = separation	
$\vec{p} = m\vec{v}$	r = radius or separation	$\Delta V = \frac{Q}{C}$	t = time	
	T = period	$\Delta V = \overline{C}$	U = potential (stored)	
$\Delta \vec{p} = \vec{F} \Delta t$	t = time		energy	
1	U = potential energy	$C = \kappa \varepsilon_0 \frac{A}{d}$	V = electric potential	
$K = \frac{1}{2}mv^2$	v = speed	0	v = speed	
2	W = work done on a system x = position	$E = \frac{Q}{\varepsilon_0 A}$	κ = dielectric constant	
$\Delta E = W = F_{\parallel}d = Fd\cos\theta$	y = height		ρ = resistivity	
	α = angular acceleration	$U_C = \frac{1}{2}Q\Delta V = \frac{1}{2}C(\Delta V)^2$	θ = angle	
$P = \frac{\Delta E}{\Delta t}$	μ = coefficient of friction		$\Phi = $ flux	
Δt	θ = angle	$I = \frac{\Delta Q}{\Delta t}$		
	$\tau = \text{torque}$	Δt		
$\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$	ω = angular speed	$R = \frac{\rho \ell}{A}$	$\vec{F}_M = q\vec{v} \times \vec{B}$	
$\omega = \omega_0 + \alpha t$	$U_s = \frac{1}{2}kx^2$	$P = I \Delta V$	$\left \vec{F}_{M} \right = \left q \vec{v} \right \left \sin \theta \right \left \vec{B} \right $	
$x = A\cos(\omega t) = A\cos(2\pi f t)$	$\Delta U_g = mg \Delta y$			
Σ		$I = \frac{\Delta V}{R}$	$\vec{F}_M = I\vec{\ell} \times \vec{B}$	
$x_{cm} = \frac{\sum m_i x_i}{\sum m_i}$	$T = \frac{2\pi}{\omega} = \frac{1}{f}$	$R_s = \sum_i R_i$		
$\sum m_i$	$I = \omega = f$		$\left \vec{F}_{M} \right = \left I \vec{\ell} \right \left \sin \theta \right \left \vec{B} \right $	
$\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I}$	$T_s = 2\pi \sqrt{\frac{m}{k}}$	$\frac{1}{R_p} = \sum_i \frac{1}{R_i}$	$\Phi_B = \vec{B} \cdot \vec{A}$	
$\tau = r_{\perp}F = rF\sin\theta$	$T_p = 2\pi \sqrt{\frac{\ell}{g}}$	$C_p = \sum_i C_i$	$\Phi_B = \left \vec{B} \right \cos \theta \left \vec{A} \right $	
$L = I\omega$	111 111	$\frac{1}{C_s} = \sum_i \frac{1}{C_i}$	$\Delta \Phi_B$	
$\Delta L = \tau \Delta t$	$\left \vec{F}_{g}\right = G \frac{m_{1}m_{2}}{r^{2}}$	$C_s \xrightarrow{i} C_i$	$\boldsymbol{\mathcal{E}} = -\frac{\Delta \Phi_B}{\Delta t}$	
$K = \frac{1}{2}I\omega^2$	$\vec{g} = \frac{\vec{F}_g}{m}$	$B = \frac{\mu_0}{2\pi} \frac{I}{r}$	$\boldsymbol{\mathcal{E}} = B\ell v$	
$\left ec{F}_{s} ight = k ec{x} $	$U_G = -\frac{Gm_1m_2}{r}$			

ADVANCED PLACEMENT PHYSICS 2 EQUATIONS, EFFECTIVE 2015

FLUID MECHANICS AN	ND THERMAL PHYSICS	WAVES AND OPTICS		
$\rho = \frac{m}{V}$ $P = \frac{F}{A}$ $P = P_0 + \rho g h$ $F_b = \rho V g$ $A_1 v_1 = A_2 v_2$ $P_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2$ $= P_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2$	A = area $F = force$ $h = depth$ $k = thermal conductivity$ $K = kinetic energy$ $L = thickness$ $m = mass$ $n = number of moles$ $N = number of molecules$ $P = pressure$ $Q = energy transferred to a$ $system by heating$ $T = temperature$ $t = time$ $U = internal energy$ $V = volume$	$\lambda = \frac{v}{f}$ $n = \frac{c}{v}$ $n_1 \sin \theta_1 = n_2 \sin \theta_2$ $\frac{1}{s_i} + \frac{1}{s_o} = \frac{1}{f}$ $ M = \left \frac{h_i}{h_o}\right = \left \frac{s_i}{s_o}\right $ $\Delta L = m\lambda$ $d\sin \theta = m\lambda$	d = separation $f = \text{frequency or} \\ \text{focal length}$ h = height L = distance M = magnification m = an integer $n = \text{index of} \\ \text{refraction}$ s = distance v = speed $\lambda = \text{wavelength}$ $\theta = \text{angle}$	
$\frac{Q}{\Delta t} = \frac{kA \Delta T}{L}$	v = speed W = work done on a system	GEOMETRY AN	D TRIGONOMETRY $A = \text{area}$	
$PV = nRT = Nk_BT$ $K = \frac{3}{2}k_BT$ $W = -P\Delta V$ $\Delta U = Q + W$	y = height $\rho = \text{density}$	A = bh Triangle $A = \frac{1}{2}bh$ Circle $A = \pi r^{2}$	$C = \text{circumference}$ $V = \text{volume}$ $S = \text{surface area}$ $b = \text{base}$ $h = \text{height}$ $\ell = \text{length}$ $w = \text{width}$ $r = \text{radius}$	
MODERN	PHYSICS	$C = 2\pi r$		
$E = hf$ $K_{max} = hf - \phi$ $\lambda = \frac{h}{p}$ $E = mc^{2}$	E = energy f = frequency K = kinetic energy m = mass p = momentum $\lambda = wavelength$ $\phi = work function$	Rectangular solid $V = \ell w h$ Cylinder $V = \pi r^2 \ell$ $S = 2\pi r \ell + 2\pi r^2$ Sphere $V = \frac{4}{3}\pi r^3$ $S = 4\pi r^2$	Right triangle $c^2 = a^2 + b^2$ $\sin \theta = \frac{a}{c}$ $\cos \theta = \frac{b}{c}$ $\tan \theta = \frac{a}{b}$ $\theta = \frac{90^{\circ}}{b}$	