

4. (10 points, suggested time 20 minutes)

A large boat like the one shown above has a mass M_b and can displace a maximum volume V_b . The boat is floating in a river with water of density ρ_{water} and is being loaded with steel beams each of density ρ_{steel} and volume V_{steel} . The boat owners want to be able to carry as many beams as possible.

(a) Derive an expression for the maximum number N of steel beams that can be loaded on the boat without exceeding the maximum displaced volume, in terms of the given quantities and physical constants, as appropriate.

(b) The captain realizes that oil is leaking from the boat, creating a thin film of oil on the water surface. In one area of the oil film the surface looks mostly green. Explain in detail how constructive interference contributes to the green appearance. Assume the index of refraction of the oil is greater than the index of refraction of the water.

(c) Later the boat is floating down the river with the water current, heading for a town. The river has a width of 60 m and a constant depth and flows at a speed of 5 km/hr. Partway to the town, the river narrows to a width of 30 m while its depth remains the same. Calculate the speed of the water in the narrow section.